Back to Search Start Over

Towards a Faster Randomized Parcellation Based Inference

Authors :
Gaël Varoquaux
Bertrand Thirion
Andrés Hoyos-Idrobo
Microsoft Research - Inria Joint Centre (MSR - INRIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Microsoft Research Laboratory Cambridge-Microsoft Corporation [Redmond, Wash.]
Modelling brain structure, function and variability based on high-field MRI data (PARIETAL)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Service NEUROSPIN (NEUROSPIN)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Service NEUROSPIN (NEUROSPIN)
This project received funding from the European Union’s Horizon 2020 Framework Program for Research and Innovation under Grant Agreement No 720270 (Human Brain Project SGA1).
Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Source :
PRNI 2017-7th International Workshop on Pattern Recognition in NeuroImaging, PRNI 2017-7th International Workshop on Pattern Recognition in NeuroImaging, Jun 2017, Toronto, Canada, PRNI
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

International audience; In neuroimaging, multi-subject statistical analysis is an essential step, as it makes it possible to draw conclusions for the population under study. However, the lack of power in neuroimaging studies combined with the lack of stability and sensitivity of voxel-based methods may lead to non-reproducible results. A method designed to tackle this problem is Randomized Parcellation-Based Inference (RPBI), which has shown good empirical performance. Nevertheless, the use of an agglomerative clustering algorithm proposed in the initial RPBI formulation to build the parcellations entails a large computation cost. In this paper, we explore two strategies to speedup RPBI: Firstly, we use a fast clustering algorithm called Recursive Nearest Agglomeration (ReNA), to find the parcellations. Secondly, we consider the aggregation of p-values over multiple parcellations to avoid a permutation test. We evaluate their the computation time, as well as their recovery performance. As a main conclusion, we advocate the use of (permuted) RPBI with ReNA, as it yields very fast models, while keeping the performance of slower methods.

Details

Language :
English
Database :
OpenAIRE
Journal :
PRNI 2017-7th International Workshop on Pattern Recognition in NeuroImaging, PRNI 2017-7th International Workshop on Pattern Recognition in NeuroImaging, Jun 2017, Toronto, Canada, PRNI
Accession number :
edsair.doi.dedup.....e2a63f646b4f8bbbbe5d5e9996d11ee5