1. Constructing Antidictionaries of Long Texts in Output-Sensitive Space
- Author
-
Solon P. Pissis, Golnaz Badkobeh, Alice Héliou, Gabriele Fici, Lorraine A.K. Ayad, Department of Informatics [King's College London], King‘s College London, Goldsmiths, University of London (Goldsmiths College), University of London [London], Dipartimento di Matematica e Informatica [Palermo], Università degli studi di Palermo - University of Palermo, Centrum Wiskunde & Informatica (CWI), Equipe de recherche européenne en algorithmique et biologie formelle et expérimentale (ERABLE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Bioinformatics, AIMMS, Bio Informatics (IBIVU), Centrum Wiskunde & Informatica, Amsterdam (CWI), The Netherlands, Ayad L.A.K., Badkobeh G., Fici G., Heliou A., and Pissis S.P.
- Subjects
0301 basic medicine ,Antidictionary ,Settore INF/01 - Informatica ,Output sensitive algorithm ,0102 computer and information sciences ,Space (mathematics) ,01 natural sciences ,Theoretical Computer Science ,String algorithm ,Prefix ,Set (abstract data type) ,Combinatorics ,03 medical and health sciences ,030104 developmental biology ,Computational Theory and Mathematics ,010201 computation theory & mathematics ,Data compression ,Output-sensitive algorithm ,[INFO]Computer Science [cs] ,Suffix ,Alphabet ,Absent word ,Word (group theory) ,Mathematics - Abstract
A wordxthat is absent from a wordyis calledminimalif all its proper factors occur iny. Given a collection ofkwordsy1, … ,ykover an alphabetΣ, we are asked to compute the set$\mathrm {M}^{\ell }_{\{y_1,\ldots ,y_k\}}$M{y1,…,yk}ℓof minimal absent words of length at mostℓof the collection {y1, … ,yk}. The set$\mathrm {M}^{\ell }_{\{y_1,\ldots ,y_k\}}$M{y1,…,yk}ℓcontains all the wordsxsuch thatxis absent from all the words of the collection while there existi,j, such that the maximal proper suffix ofxis a factor ofyiand the maximal proper prefix ofxis a factor ofyj. In data compression, this corresponds to computing the antidictionary ofkdocuments. In bioinformatics, it corresponds to computing words that are absent from a genome ofkchromosomes. Indeed, the set$\mathrm {M}^{\ell }_{y}$Myℓof minimal absent words of a wordyis equal to$\mathrm {M}^{\ell }_{\{y_1,\ldots ,y_k\}}$M{y1,…,yk}ℓfor any decomposition ofyinto a collection of wordsy1, … ,yksuch that there is an overlap of length at leastℓ− 1 between any two consecutive words in the collection. This computation generally requiresΩ(n) space forn= |y| using any of the plenty available$\mathcal {O}(n)$O(n)-time algorithms. This is because anΩ(n)-sized text index is constructed overywhich can be impractical for largen. We do the identical computation incrementally using output-sensitive space. This goal is reasonable when$\| \mathrm {M}^{\ell }_{\{y_1,\ldots ,y_N\}}\| =o(n)$∥M{y1,…,yN}ℓ∥=o(n), for allN∈ [1,k], where ∥S∥ denotes the sum of the lengths of words in setS. For instance, in the human genome,n≈ 3 × 109but$\| \mathrm {M}^{12}_{\{y_1,\ldots ,y_k\}}\| \approx 10^{6}$∥M{y1,…,yk}12∥≈106. We consider a constant-sized alphabet for stating our results. We show thatall$\mathrm {M}^{\ell }_{y_{1}},\ldots ,\mathrm {M}^{\ell }_{\{y_1,\ldots ,y_k\}}$My1ℓ,…,M{y1,…,yk}ℓcan be computed in$\mathcal {O}(kn+{\sum }^{k}_{N=1}\| \mathrm {M}^{\ell }_{\{y_1,\ldots ,y_N\}}\| )$O(kn+∑N=1k∥M{y1,…,yN}ℓ∥)total time using$\mathcal {O}(\textsc {MaxIn}+\textsc {MaxOut})$O(MaxIn+MaxOut)space, where MaxIn is the length of the longest word in {y1, … ,yk} and$\textsc {MaxOut}=\max \limits \{\| \mathrm {M}^{\ell }_{\{y_1,\ldots ,y_N\}}\| :N\in [1,k]\}$MaxOut=max{∥M{y1,…,yN}ℓ∥:N∈[1,k]}. Proof-of-concept experimental results are also provided confirming our theoretical findings and justifying our contribution.
- Published
- 2021
- Full Text
- View/download PDF