Back to Search Start Over

Constructing Antidictionaries in Output-Sensitive Space

Authors :
Golnaz Badkobeh
Alice Héliou
Gabriele Fici
Solon P. Pissis
Lorraine A.K. Ayad
Department of Informatics [King's College London]
King‘s College London
Goldsmiths, University of London (Goldsmiths College)
University of London [London]
Dipartimento di Matematica e Informatica [Palermo]
Università degli studi di Palermo - University of Palermo
Centrum Wiskunde & Informatica (CWI)
Equipe de recherche européenne en algorithmique et biologie formelle et expérimentale (ERABLE)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Department of Computing, Goldsmiths, University of London
Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, Palermo, Italy
Storer, James A.
Bilgin, Ali
Serra-Sagrista, Joan
Marcellin, Michael W.
Ayad L.A.K.
Badkobeh G.
Fici G.
Heliou A.
Pissis S.P.
Centrum Wiskunde & Informatica, Amsterdam (CWI), The Netherlands
Source :
DCC, Theory of Computing Systems, Theory of Computing Systems, Springer Verlag, 2021, 65 (5), pp.777-797. ⟨10.1007/s00224-020-10018-5⟩, Ayad, L A K, Badkobeh, G, Fici, G, Heliou, A & Pissis, S P 2019, Constructing Antidictionaries in Output-Sensitive Space . in J A Storer, A Bilgin, J Serra-Sagrista & M W Marcellin (eds), Proceedings-DCC 2019 : 2019 Data Compression Conference . vol. 2019-March, 8712742, pp. 538-547 . https://doi.org/10.1109/DCC.2019.00062
Publication Year :
2019
Publisher :
IEEE, 2019.

Abstract

A word $x$ that is absent from a word $y$ is called minimal if all its proper factors occur in $y$. Given a collection of $k$ words $y_1,y_2,\ldots,y_k$ over an alphabet $\Sigma$, we are asked to compute the set $\mathrm{M}^{\ell}_{y_{1}\#\ldots\#y_{k}}$ of minimal absent words of length at most $\ell$ of word $y=y_1\#y_2\#\ldots\#y_k$, $\#\notin\Sigma$. In data compression, this corresponds to computing the antidictionary of $k$ documents. In bioinformatics, it corresponds to computing words that are absent from a genome of $k$ chromosomes. This computation generally requires $\Omega(n)$ space for $n=|y|$ using any of the plenty available $\mathcal{O}(n)$-time algorithms. This is because an $\Omega(n)$-sized text index is constructed over $y$ which can be impractical for large $n$. We do the identical computation incrementally using output-sensitive space. This goal is reasonable when $||\mathrm{M}^{\ell}_{y_{1}\#\ldots\#y_{N}}||=o(n)$, for all $N\in[1,k]$. For instance, in the human genome, $n \approx 3\times 10^9$ but $||\mathrm{M}^{12}_{y_{1}\#\ldots\#y_{k}}|| \approx 10^6$. We consider a constant-sized alphabet for stating our results. We show that all $\mathrm{M}^{\ell}_{y_{1}},\ldots,\mathrm{M}^{\ell}_{y_{1}\#\ldots\#y_{k}}$ can be computed in $\mathcal{O}(kn+\sum^{k}_{N=1}||\mathrm{M}^{\ell}_{y_{1}\#\ldots\#y_{N}}||)$ total time using $\mathcal{O}(\mathrm{MaxIn}+\mathrm{MaxOut})$ space, where $\mathrm{MaxIn}$ is the length of the longest word in $\{y_1,\ldots,y_{k}\}$ and $\mathrm{MaxOut}=\max\{||\mathrm{M}^{\ell}_{y_{1}\#\ldots\#y_{N}}||:N\in[1,k]\}$. Proof-of-concept experimental results are also provided confirming our theoretical findings and justifying our contribution.<br />Comment: Version accepted to DCC 2019

Details

ISSN :
14324350, 14330490, and 23750359
Database :
OpenAIRE
Journal :
2019 Data Compression Conference (DCC)
Accession number :
edsair.doi.dedup.....a9a9bb8ff81d4da2652483a07f783eda
Full Text :
https://doi.org/10.1109/dcc.2019.00062