1. CDKN2A-p16 Deletion and Activated KRAS G12D Drive Barrett's-Like Gland Hyperplasia-Metaplasia and Synergize in the Development of Dysplasia Precancer Lesions.
- Author
-
Sun J, Sepulveda JL, Komissarova EV, Hills C, Seckar TD, LeFevre NM, Simonyan H, Young C, Su G, Del Portillo A, Wang TC, and Sepulveda AR
- Subjects
- Humans, Mice, Animals, Proto-Oncogene Proteins p21(ras) genetics, Proto-Oncogene Proteins p21(ras) metabolism, Hyperplasia, Metaplasia genetics, Cyclin-Dependent Kinase Inhibitor p16 genetics, Cyclin-Dependent Kinase Inhibitor p16 metabolism, Barrett Esophagus genetics, Barrett Esophagus pathology, Precancerous Conditions pathology, Adenocarcinoma pathology, Esophageal Neoplasms
- Abstract
Background & Aims: Barrett's esophagus is the precursor of esophageal dysplasia and esophageal adenocarcinoma. CDKN2A-p16 deletions were reported in 34%-74% of patients with Barrett's esophagus who progressed to dysplasia and esophageal adenocarcinoma, suggesting that p16 loss may drive neoplastic progression. KRAS activation frequently occurs in esophageal adenocarcinoma and precancer lesions. LGR5
+ stem cells in the squamocolumnar-junction (SCJ) of mouse stomach contribute as Barrett's esophagus progenitors. We aimed to determine the functional effects of p16 loss and KRAS activation in Barrett's-like metaplasia and dysplasia development., Methods: We established mouse models with conditional knockout of CDKN2A-p16 (p16KO) and/or activated KRASG12D expression targeting SCJ LGR5+ cells in interleukin 1b transgenic mice and characterized histologic alterations (mucous-gland hyperplasia/metaplasia, inflammation, and dysplasia) in mouse SCJ. Gene expression was determined by microarray, RNA sequencing, and immunohistochemistry of SCJ tissues and cultured 3-dimensional organoids., Results: p16KO mice exhibited increased mucous-gland hyperplasia/metaplasia versus control mice (P = .0051). Combined p16KO+KRASG12D resulted in more frequent dysplasia and higher dysplasia scores (P = .0036), with 82% of p16KO+KRASG12D mice developing high-grade dysplasia. SCJ transcriptome analysis showed several activated pathways in p16KO versus control mice (apoptosis, tumor necrosis factor-α/nuclear factor-kB, proteasome degradation, p53 signaling, MAPK, KRAS, and G1-to-S transition)., Conclusions: p16 deletion in LGR5+ cell precursors triggers increased SCJ mucous-gland hyperplasia/metaplasia. KRASG12D synergizes with p16 deletion resulting in higher grades of SCJ glandular dysplasia, mimicking Barrett's high-grade dysplasia. These genetically modified mouse models establish a functional role of p16 and activated KRAS in the progression of Barrett's-like lesions to dysplasia in mice, representing an in vivo model of esophageal adenocarcinoma precancer. Derived 3-dimensional organoid models further provide in vitro modeling opportunities of esophageal precancer stages., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF