1. Singular solutions for a class of traveling wave equations arising in hydrodynamics
- Author
-
Geyer, Anna, Mañosa Fernández, Víctor, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
- Subjects
Traveling waves ,Hydrodinamics ,Economics, Econometrics and Finance(all) ,Dynamical Systems (math.DS) ,Camassa-Holm equations ,Matemàtiques i estadística::Equacions diferencials i integrals [Àrees temàtiques de la UPC] ,Mathematics - Analysis of PDEs ,Integrable vector fields ,37 Dynamical systems and ergodic theory::37C Smooth dynamical systems: general theory [Classificació AMS] ,Classical Analysis and ODEs (math.CA) ,FOS: Mathematics ,Camassa–Holm equation ,Mathematics - Dynamical Systems ,Camassa-Holm equation ,Engineering(all) ,Medicine(all) ,Equacions diferencials singulars ,35 Partial differential equations::35Q Equations of mathematical physics and other areas of application [Classificació AMS] ,Periodic solutions ,Hidrodinàmica ,Applied Mathematics ,Singular ordinary differential equations ,Differential equations, Partial ,Equacions diferencials parcials ,76 Fluid mechanics::76B Incompressible inviscid fluids [Classificació AMS] ,Computational Mathematics ,Mathematics - Classical Analysis and ODEs ,35Q51, 37C29, 35Q35, 76B15, 37N10 ,Hydrodynamics ,37 Dynamical systems and ergodic theory::37N Applications [Classificació AMS] ,Analysis ,Analysis of PDEs (math.AP) - Abstract
We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form $\ddot{u}\,u + \frac{1}{2}\dot{u}^2 + F'(u) =0$, where $F$ is an analytic function. Our motivation stems from the fact that in the context of hydrodynamics several prominent equations are reducible to an equation of this form upon passing to a moving frame. We construct peaked and cusped waves, fronts with finite-time decay and compact solitary waves. We prove that one cannot obtain peaked and compactly supported traveling waves for the same equation. In particular, a peaked traveling wave cannot have compact support and vice versa. To exemplify the approach we apply our results to the Camassa-Holm equation and the equation for surface waves of moderate amplitude, and show how the different types of singular solutions can be obtained varying the energy level of the corresponding planar Hamiltonian systems., Comment: 24 pages, 5 figures
- Published
- 2016