Back to Search Start Over

Singular solutions for a class of traveling wave equations arising in hydrodynamics

Authors :
Geyer, Anna
Mañosa Fernández, Víctor
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
Source :
Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Recercat. Dipósit de la Recerca de Catalunya, instname
Publication Year :
2016

Abstract

We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form $\ddot{u}\,u + \frac{1}{2}\dot{u}^2 + F'(u) =0$, where $F$ is an analytic function. Our motivation stems from the fact that in the context of hydrodynamics several prominent equations are reducible to an equation of this form upon passing to a moving frame. We construct peaked and cusped waves, fronts with finite-time decay and compact solitary waves. We prove that one cannot obtain peaked and compactly supported traveling waves for the same equation. In particular, a peaked traveling wave cannot have compact support and vice versa. To exemplify the approach we apply our results to the Camassa-Holm equation and the equation for surface waves of moderate amplitude, and show how the different types of singular solutions can be obtained varying the energy level of the corresponding planar Hamiltonian systems.<br />Comment: 24 pages, 5 figures

Details

Database :
OpenAIRE
Journal :
Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Recercat. Dipósit de la Recerca de Catalunya, instname
Accession number :
edsair.doi.dedup.....34d314f1bdab2ea87d56fb25bd848d4d