Back to Search
Start Over
Singular solutions for a class of traveling wave equations arising in hydrodynamics
- Source :
- Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Recercat. Dipósit de la Recerca de Catalunya, instname
- Publication Year :
- 2016
-
Abstract
- We give an exhaustive characterization of singular weak solutions for ordinary differential equations of the form $\ddot{u}\,u + \frac{1}{2}\dot{u}^2 + F'(u) =0$, where $F$ is an analytic function. Our motivation stems from the fact that in the context of hydrodynamics several prominent equations are reducible to an equation of this form upon passing to a moving frame. We construct peaked and cusped waves, fronts with finite-time decay and compact solitary waves. We prove that one cannot obtain peaked and compactly supported traveling waves for the same equation. In particular, a peaked traveling wave cannot have compact support and vice versa. To exemplify the approach we apply our results to the Camassa-Holm equation and the equation for surface waves of moderate amplitude, and show how the different types of singular solutions can be obtained varying the energy level of the corresponding planar Hamiltonian systems.<br />Comment: 24 pages, 5 figures
- Subjects :
- Traveling waves
Hydrodinamics
Economics, Econometrics and Finance(all)
Dynamical Systems (math.DS)
Camassa-Holm equations
Matemàtiques i estadística::Equacions diferencials i integrals [Àrees temàtiques de la UPC]
Mathematics - Analysis of PDEs
Integrable vector fields
37 Dynamical systems and ergodic theory::37C Smooth dynamical systems: general theory [Classificació AMS]
Classical Analysis and ODEs (math.CA)
FOS: Mathematics
Camassa–Holm equation
Mathematics - Dynamical Systems
Camassa-Holm equation
Engineering(all)
Medicine(all)
Equacions diferencials singulars
35 Partial differential equations::35Q Equations of mathematical physics and other areas of application [Classificació AMS]
Periodic solutions
Hidrodinàmica
Applied Mathematics
Singular ordinary differential equations
Differential equations, Partial
Equacions diferencials parcials
76 Fluid mechanics::76B Incompressible inviscid fluids [Classificació AMS]
Computational Mathematics
Mathematics - Classical Analysis and ODEs
35Q51, 37C29, 35Q35, 76B15, 37N10
Hydrodynamics
37 Dynamical systems and ergodic theory::37N Applications [Classificació AMS]
Analysis
Analysis of PDEs (math.AP)
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Recercat. Dipósit de la Recerca de Catalunya, instname
- Accession number :
- edsair.doi.dedup.....34d314f1bdab2ea87d56fb25bd848d4d