1. Development and Validation of a New Calibration Model for Diviner 2000® Probe Based on Soil Physical Attributes
- Author
-
Ceres Duarte Guedes Cabral de Almeida, Giuseppe Provenzano, Brivaldo Gomes de Almeida, and Giovanni Rallo
- Subjects
dielectric permittivity ,lcsh:Hydraulic engineering ,Mean squared error ,Geography, Planning and Development ,0207 environmental engineering ,Soil science ,02 engineering and technology ,Aquatic Science ,Biochemistry ,soil bulk density ,Root mean square ,lcsh:Water supply for domestic and industrial purposes ,lcsh:TC1-978 ,Calibration ,020701 environmental engineering ,Water Science and Technology ,Mathematics ,lcsh:TD201-500 ,capacitance probe ,gravimetric soil water content ,swelling/shrinking clay soils ,04 agricultural and veterinary sciences ,Bulk density ,Soil water ,Content (measure theory) ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Gravimetric analysis ,Capacitance probe - Abstract
This study aimed to develop a new model, valid for soil with and without expandable characters, to estimate volumetric soil water content (&theta, ) from readings of scaled frequency (SF) acquired with the Diviner 2000®, sensor. The analysis was carried out on six soils collected in western Sicily, sieved at 5 mm, and repacked to obtain the maximum and minimum bulk density (&rho, b). During an air-drying process SF values, the corresponding gravimetric soil water content (U) and &rho, b were monitored. In shrinking/swelling clay soils, due to the contraction process, the variation of dielectric permittivity was affected by the combination of the mutual proportions between the water volumes and the air present in the soil. Thus, to account for the changes of &rho, b with U, the proposed model assumed &theta, as the dependent variable being SF and &rho, b the independent variables, then the model&rsquo, s parameters were estimated based on the sand and clay fractions. The model validation was finally carried out based on data acquired in undisturbed monoliths sampled in the same areas. The estimated &theta, &theta, estim, was generally close to the corresponding measured, &theta, meas, with Root Mean Square Errors (RMSE) generally lower than 0.049 cm3 cm&minus, 3, quite low Mean Bias Errors (MBE), ranging between &minus, 0.028 and 0.045 cm3 cm&minus, 3, and always positive Nash-Sutcliffe Efficiency index (NSE), confirming the good performance of the model.
- Published
- 2020