Back to Search
Start Over
Irrigation water saving strategies in Citrus orchards: Analysis of the combined effects of timing and severity of soil water deficit
- Source :
- electronico, ReDivia. Repositorio Digital del Instituto Valenciano de Investigaciones Agrarias, Ministerio de Educación, Cultura y Deporte (MECD), Digital.CSIC. Repositorio Institucional del CSIC, instname
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- [EN] The knowledge of the crop response to soil water deficit is essential to predict the actual crop water requirements under limited soil water conditions. The mathematical schematization of the crop response under RDI can allow identifying the exact irrigation timing. The threshold of soil water status below which crop transpiration decreases represents a key parameter for the water stress functions. The main objective of this paper was to investigate the effects of several RDI treatments, applied during the three stages of fruit growth, on soil-plant-water relations of drip-irrigated mandarin trees. Experiments were carried out in seven irrigation treatments: a control, irrigated at 125% of potential evapotranspiration measured in weighting lysimeters, ETlys, during the whole year, and six RDI treatments in which 25% and 50% of ETlys were applied during each of the three stages of fruit growth. The critical threshold of soil water status expressed in terms of soil water depletion below which predawn (PLWP) and midday (MSWP) leaf water potential is affected by decreasing soil water content, were identified. The dependency of crop water status from the climate forcing, occurring under soil water contents higher than the critical threshold was also demonstrated. Moreover, a strong relationship between water stress integral ( ) evaluated during the three stages of fruit growth, and the corresponding amount of water applied (irrigation and precipitation) was observed after normalizing the variables. The robust relationship between these two variables (R2 = 0.83) confirmed that the water stress integral represents a good indicator of the plant-water relationship and allows the prediction of the total irrigation depth to be applied to achieve a desired stress level during the fruit growth. Moreover, this relationship depends on the irrigation schedule adopted to regulate the deficit, which includes the irrigation variables, such as irrigation dose and its variability.<br />The research was carried out in the frame of Progetto Organizzazioni di Produttori-Illuminati Frutta-Rallo (University of Pisa, 1048 Ministero delle Politiche Agricole e Forestali-Regione Toscana) and ATMOSMART-dimostratore tecnologico (University of Pisa).
- Subjects :
- Irrigation
Deficit irrigation
Depletion factor
Irrigation dose
Water stress integral
0208 environmental biotechnology
Soil water deficit
Soil Science
02 engineering and technology
F06 Irrigation
Crop
Evapotranspiration
Settore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestali
Precipitation
Earth-Surface Processes
Water Science and Technology
food and beverages
04 agricultural and veterinary sciences
02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible
020801 environmental engineering
12.- Garantizar las pautas de consumo y de producción sostenibles
Agronomy
Lysimeter
Soil water
040103 agronomy & agriculture
INGENIERIA AGROFORESTAL
P10 Water resources and management
0401 agriculture, forestry, and fisheries
Environmental science
Agronomy and Crop Science
Subjects
Details
- ISSN :
- 03783774
- Volume :
- 248
- Database :
- OpenAIRE
- Journal :
- Agricultural Water Management
- Accession number :
- edsair.doi.dedup.....0dfcc2f29b639d2b815b0147945fa58e
- Full Text :
- https://doi.org/10.1016/j.agwat.2021.106773