1. Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in-situ solidification
- Author
-
Qipeng Yu, Cai Biya, Lihan Zhang, Qi Liu, Song Li, Dong Zhou, Baohua Li, and Shuwei Wang
- Subjects
Materials science ,Renewable Energy, Sustainability and the Environment ,Nanowire ,Energy Engineering and Power Technology ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,0104 chemical sciences ,Ion ,Anode ,Succinonitrile ,chemistry.chemical_compound ,0904 Chemical Engineering, 0906 Electrical and Electronic Engineering ,chemistry ,Chemical engineering ,General Materials Science ,0210 nano-technology ,Electrical conductor ,Short circuit - Abstract
Safe and high-energy-density all solid-state lithium metal batteries (ASSLMBs) are great in demand for future electrical vehicle and grid energy storage. The compatibility of electrode-electrolyte interface is a critical factor influencing the electrochemical performance of ASSLMBs. Herein, we propose a plastic super-conductive carrier to deter untoward reaction between Li anode and Li1.5Al0.5Ge1.5(PO4)3 (LAGP) electrolyte by in-situ solidifying succinonitrile-based plastic interlayer with Li6.4La3Zr2Al0.24O12 (LLZAO) nanowires (l-SN). The method of in-situ solidification promises the low interfacial resistance. The l-SN interlayer can not only act as a physical obstacle to isolate LAGP pellet from Li metal, but also provide three-dimensional ion channels to regulate the transfer of Li ions, delivering an uniform Li ion distribution for dendrite-free Li deposition. The Li|l-SN|LAGP|l-SN|Li symmetric cell can stably cycle for 240 h without short circuit at room temperature (R.T). This approach enables a high specific capacity of 152.5 mAh g−1 at 0.1C for Li|l-SN|LAGP|l-SN|LiFePO4 cells at R.T. Furthermore, the integrated ASSLMBs show excellent cyclic stability at 40 °C with an initial discharge capacity of 168.4 mAh g−1 at 0.5C and retention of 93.17% after 100 cycles. The super-ionic property at the interface makes excellent rate performance of ASSLMBs at 40 °C. This strategy is facile and efficient in promising safe and outstanding ASSLMBs and also has some referential values for other unstable electrolyte interface beyond LAGP.
- Published
- 2020