Back to Search Start Over

Foldable and scrollable graphene paper with tuned interlayer spacing as high areal capacity anodes for sodium-ion batteries

Authors :
Ziwen Yuan
Li Wei
Nasir Mahmood
Chang Liu
Junsheng Chen
Asif Mahmood
Zixun Yu
Muhammad Adil Riaz
Xiao Sui
Yuan Chen
Cheng Wang
Zengxia Pei
Shenlong Zhao
Publication Year :
2021
Publisher :
Elsevier, 2021.

Abstract

Bulk graphitic carbon materials with expanded interlayer spacing and abundant defects may serve as efficient anodes with high areal capacities for sodium-ion batteries (SIBs). However, obtaining long-range order in bulk graphitic carbon materials with expanded interlayer spacing is extremely difficult. Herein, an explosive decomposition method is demonstrated to realize thermally reduced graphene oxide (rGO) paper with tuned interlayer spacing. The in-situ temperature-dependent X-ray diffraction (td-XRD) was utilized to establish the correlation between heating rate and interlayer spacing. Based on td-XRD results, free-standing graphene paper (FSG) was synthesized at 450°C under a high heating rate of 70°C/min. The FSG exhibits a highly porous structure made of graphene flakes with abundant surface epoxy groups with an overall interlayer spacing of 0.38–0.39 nm. The rGO flakes in FSG are separated by large voids that provide fast mass transport pathways and allow expansion/contraction of crystallites upon reversible Na intercalation. The FSG was utilized directly as anodes without any binder and conductive agent and delivered an excellent reversible capacity of 290 mAh/g at a current density of 50 mA/g. Moreover, the FSG exhibited excellent foldability and rollability to create high areal density anodes, delivering an areal capacity of 0.62 mAh/cm2 at a current density of 100 μA/cm2. These results open the door to fabricate graphene material-based carbon anodes with tunable interlayer spacing for high-performance SIBs.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....ef16e348c1d800ac759d858a1a3c274f