23,422 results on '"Physique"'
Search Results
2. Electroluminescence from nanocrystals above 2 µm
- Author
-
Junling Qu, Mateusz Weis, Eva Izquierdo, Simon Gwénaël Mizrahi, Audrey Chu, Corentin Dabard, Charlie Gréboval, Erwan Bossavit, Yoann Prado, Emmanuel Péronne, Sandrine Ithurria, Gilles Patriarche, Mathieu G. Silly, Grégory Vincent, Davide Boschetto, Emmanuel Lhuillier, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'optique appliquée (LOA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Nanostructures et optique (INSP-E4), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), DOTA, ONERA, Université Paris Saclay [Palaiseau], ONERA-Université Paris-Saclay, École Nationale Supérieure de Techniques Avancées (ENSTA Paris), ANR-21-CE24-0012,BRIGHT,Diode électroluminescente infrarouge brillante par exaltation du couplage lumière-matière(2021), ANR-19-CE24-0022,COPIN,Détecteur plasmonique à nanoCristaux colloïdaux: une nouvelle filière pour l'OPtoélectronique INfrarouge(2019), ANR-19-CE09-0017,FRONTAL,Nanocristaux Colloïdaux Dopés Infrarouges(2019), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-20-ASTR-0008,NITquantum,Design et fabrication d'un plan focal dans le proche infrarouge à base de nanocrisrtaux(2020), European Project: 756225,blackQD, and European Project: 853049,ne2dem
- Subjects
narrow band-gap nanocrystals ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,HgTe ,7. Clean energy ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,electroluminescence ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,short wave infrared - Abstract
International audience; Visible nanocrystal-based light-emitting diodes (LEDs) are about to become commercially available. However, their infrared counterparts suffer from two key limitations. First, III–V semiconductor technologies are strong competitors. Second, their potential for operation beyond 1.7 µm remains unexplored. The range from 1.5 to 4 µm corresponds to a technological gap in which the efficiency of interband quantum-well-based devices vanishes and quantum cascade lasers are not efficient enough. Powerful infrared LEDs in this range are needed for applications such as active imaging, organic molecule sensing and airfield lighting. Here we report the design of a HgTe nanocrystal-based LED with luminescence between 2 and 2.3 µm. With an external quantum efficiency of 0.3% and radiance up to 3 W Sr−1 m−2, these HgTe LEDs already present a competitive performance for emission above 2 µm.
- Published
- 2021
3. Greening Pathways for Synthetic Talc Production Based on the Supercritical Hydrothermal Flow Process
- Author
-
Jubayed, François Martin, Guido Sonnemann, Marie Claverie, Valentina Musumeci, Edis Glogic, Cyril Aymonier, Christel Carême, Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Imerys Talc Europe, IMERYS, Department of Mechanical Engineering, University of Coimbra [Portugal] (UC), Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), The University of Bordeaux, and the French National Center for Scientific Research, as well as the Conseil Régional Nouvelle-Aquitaine for the financial support., Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Imerys Aluminates, Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,General Chemical Engineering ,02 engineering and technology ,010402 general chemistry ,Talc ,7. Clean energy ,01 natural sciences ,Hydrothermal circulation ,Greening ,life cycle assessment ,supercritical hydrothermal flow synthesis ,medicine ,Environmental Chemistry ,Flow process ,Renewable Energy, Sustainability and the Environment ,synthetic talc ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,Supercritical fluid ,0104 chemical sciences ,precursor concentration ,ex ante LCA ,Chemical engineering ,13. Climate action ,Scientific method ,0210 nano-technology ,medicine.drug - Abstract
International audience; Recent efforts in chemistry have led to development of a fast and continuous process for the production of synthetic talc in a supercritical hydrothermal reactor. This attractive process compatible with industrial requirements leads to advantageous physicochemical characteristics including submicrometer size, hydrophilicity, and high chemical and mineralogical purity. In addition, the high speed of the process and moderate reaction conditions have potential advantages from a viewpoint of the impacts on the environment. To verify environmental advantages and seize further opportunities to improve environmental performance, the current study evaluates the new process using the life cycle assessment (LCA) methodology. A cradle-to-gate assessment considers the production of synthetic talc from different magnesium and reagent acid precursors at different concentrations. The findings suggest high impacts of precursors (65–94%, depending on their concentration) and low impacts of process energy and water. Substituting magnesium acetate with magnesium sulfate could reduce greenhouse gases from 4.8 to 2.6 kgCO2 and cumulative energy use from 86 to 34 MJ per 1 kg of synthetic talc. Discussion draws on previous LCA studies on the supercritical hydrothermal process and applications of synthetic talc considering its environmental performance and characteristics in comparison to the conventional (natural) talc.
- Published
- 2021
4. A spectroscopic hike in the U–O phase diagram
- Author
-
Kathy Dardenne, Marie Margaux Desagulier, Enrica Epifano, Damien Prieur, Philippe Martin, Daniel R. Neuville, Christine Guéneau, Joerg Rothe, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), European Synchroton Radiation Facility [Grenoble] (ESRF), Institut des Sciences et technologies pour une Economie Circulaire des énergies bas carbone (ISEC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), Département de Physico-Chimie (DPC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Karlsruhe Institute of Technology (KIT), Institut de Physique du Globe de Paris (IPGP), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Technology ,Nuclear and High Energy Physics ,Materials science ,Actinide Physics and Chemistry ,02 engineering and technology ,UO2 ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Condensed Matter::Materials Science ,thermodynamics ,Thermodynamical Calculation ,in situ XANES ,Statistical physics ,CALPHAD method ,Instrumentation ,Phase diagram ,[PHYS]Physics [physics] ,Radiation ,Experimental data ,021001 nanoscience & nanotechnology ,XANES ,0104 chemical sciences ,Physics::Space Physics ,Critical assessment ,0210 nano-technology ,ddc:600 - Abstract
In situ XANES is a powerful method to collect new experimental data in the U–O phase diagram., The U–O phase diagram is of paramount interest for nuclear-related applications and has therefore been extensively studied. Experimental data have been gathered to feed the thermodynamic calculations and achieve an optimization of the U–O system modelling. Although considered as well established, a critical assessment of this large body of experimental data is necessary, especially in light of the recent development of new techniques applicable to actinide materials. Here we show how in situ X-ray absorption near-edge structure (XANES) is suitable and relevant for phase diagram determination. New experimental data points have been collected using this method and discussed in regard to the available data. Comparing our experimental data with thermodynamic calculations, we observe that the current version of the U–O phase diagram misses some experimental data in specific domains. This lack of experimental data generates inaccuracy in the model, which can be overcome using in situ XANES. Indeed, as shown in the paper, this method is suitable for collecting experimental data in non-ambient conditions and for multiphasic systems.
- Published
- 2021
5. Analog programing of conducting-polymer dendritic interconnections and control of their morphology
- Author
-
Fabien Alibart, Anna Susloparova, Sébastien Pecqueur, Kamila Janzakova, Mahdi Ghazal, Yannick Coffinier, Ankush Kumar, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Nanostructures, nanoComponents & Molecules - IEMN (NCM - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), NanoBioInterfaces - IEMN (NBI - IEMN), Laboratoire Nanotechnologies et Nanosystèmes [Sherbrooke] (LN2), Université de Sherbrooke (UdeS)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), European Commission: H2020-EU.1.1.ERC project IONOS (# GA 773228-recipient: F.A.)., Renatech Network, European Project: 773228,H2020,ERC-2017-COG,IONOS(2018), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), and Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
- Subjects
Bridging (networking) ,Computer science ,Science ,General Physics and Astronomy ,FOS: Physical sciences ,Image processing ,02 engineering and technology ,Applied Physics (physics.app-ph) ,010402 general chemistry ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Article ,Electrochemistry ,Electronic devices ,Electronics ,[PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn] ,Biochip ,Emulation ,Multidisciplinary ,Process (computing) ,General Chemistry ,Physics - Applied Physics ,Disordered Systems and Neural Networks (cond-mat.dis-nn) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Condensed Matter - Disordered Systems and Neural Networks ,021001 nanoscience & nanotechnology ,Electrical and electronic engineering ,0104 chemical sciences ,[SPI.TRON]Engineering Sciences [physics]/Electronics ,Neuromorphic engineering ,Duty cycle ,0210 nano-technology ,Biological system - Abstract
Although materials and processes are different from biological cells’, brain mimicries led to tremendous achievements in parallel information processing via neuromorphic engineering. Inexistent in electronics, we emulate dendritic morphogenesis by electropolymerization in water, aiming in operando material modification for hardware learning. Systematic study of applied voltage-pulse parameters details on tuning independently morphological aspects of micrometric dendrites’: fractal number, branching degree, asymmetry, density or length. Growths time-lapse image processing shows spatial features to be dynamically dependent, and expand distinctively before and after conductive bridging with two electro-generated dendrites. Circuit-element analysis and impedance spectroscopy confirms their morphological control in temporal windows where growth kinetics is finely perturbed by the input frequency and duty cycle. By the emulation of one’s most preponderant mechanisms for brain’s long-term memory, its implementation in vicinity of sensing arrays, neural probes or biochips shall greatly optimize computational costs and recognition required to classify high-dimensional patterns from complex environments., Despite advances in brain-inspired computing, existing electronics use top-down processes that do not compare with neural connections in the brain. Here, the authors report an electrically-tunable electropolymerization process that emulates and controls neural dendritic morphogenesis.
- Published
- 2021
6. Magnetic Hysteresis in a Monolayer of Oriented 6 nm CsNiCr Prussian Blue Analogue Nanocrystals
- Author
-
Christophe Cartier dit Moulin, M.-A. Arrio, Laurent Lisnard, Edwige Otero, Weibin Li, Sandra Mazerat, Philippe Ohresser, Laure Catala, Luqiong Zhang, Philippe Sainctavit, Talal Mallah, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), and Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Prussian blue ,Coordination sphere ,Magnetic circular dichroism ,02 engineering and technology ,Coercivity ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Linear dichroism ,Magnetic hysteresis ,01 natural sciences ,0104 chemical sciences ,Inorganic Chemistry ,Condensed Matter::Materials Science ,Magnetization ,chemistry.chemical_compound ,Crystallography ,chemistry ,Monolayer ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Prussian blue analogue nanocrystals of the CsINiII[CrIII(CN)6] cubic network with 6 nm size were assembled as a single monolayer on highly organized pyrolytic graphite (HOPG). X-ray magnetic circular dichroism (XMCD) studies, at the Ni and Cr L2,3 edges, reveal the presence of an easy plane of magnetization evidenced by an opening of the magnetic hysteresis loop (coercive field of ≈200 Oe) when the magnetic field, B, is at 60° relative to the normal to the substrate. The angular dependence of the X-ray natural linear dichroism (XNLD) reveals both an orientation of the nanocrystals on the substrate and an anisotropy of the electronic cloud of the NiII and CrIII coordination sphere species belonging to the nanocrystals' surface. Ligand field multiplet (LFM) calculations that reproduce the experimental data are consistent with an elongated tetragonal distortion of surface NiII coordination sphere responsible for the magnetic behavior of monolayer.
- Published
- 2021
7. Local Structure and Magnetism of La1–xMxPO4 (M = Sm, 239Pu, 241Am) Explained by Experimental and Computational Analyses
- Author
-
Md. Ashraful Islam, Eric Colineau, Hélène Bolvin, Karin Popa, Laura Martel, Jean-Christophe Griveau, Jean-François Vigier, European Commission - Joint Research Centre [Karlsruhe] (JRC), Systèmes étendus et magnétisme (LCPQ) (SEM), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE06-0010,ACTIpNMR,déplacements de RMN paramagnétiques pour les actinides : au délà du modèle des lanthanides(2017), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Condensed matter physics ,Magnetism ,02 engineering and technology ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Local structure ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,General Energy ,Physical and Theoretical Chemistry ,0210 nano-technology - Abstract
International audience; With their high chemical and self-irradiation stability, crystalline monazites are among the most promising materials for the encapsulation of nuclear wastes. Yet, the local and magnetic structures of the matrices doped with low-content actinide cation, depicted as most resistant, are still unclear. This limits the development of theoretical approaches predicting their behavior under extreme conditions—self-irradiation and long-term leaching. Here, we characterize the model matrices La1–xMxPO4 (0 ≤ x ≤ 0.10)—with M = Sm, 239Pu, 241Am—by X-ray diffraction and solid-state 31P NMR. As an example, we confirm that La0.96241Am0.04PO4 has higher self-irradiation resistance compared to 241AmPO4. Further, computational analyses show that magnetic properties of the Pu complex are strongly affected by the J-mixing and the paramagnetic NMR shifts are dominated by the Fermi contact contribution, arising from delocalization of the spin density of the cation toward the phosphorus through the bonds.
- Published
- 2021
8. Diffusion Behavior of Methane in 3D Kerogen Models
- Author
-
Narasimhan Loganathan, Geoffrey M. Bowers, Andrey G. Kalinichev, Kai Bin Yu, A. Ozgur Yazaydin, Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
- Subjects
[PHYS]Physics [physics] ,Materials science ,General Chemical Engineering ,Energy Engineering and Power Technology ,Thermodynamics ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Methane ,chemistry.chemical_compound ,Fuel Technology ,020401 chemical engineering ,chemistry ,Kerogen ,0204 chemical engineering ,Diffusion (business) ,0210 nano-technology - Abstract
International audience; As global energy demand increases, natural gas recovery from source rocks is attracting considerable attention since recent development in shale extraction techniques has made the recovery process economically viable. Kerogens are thought to play an important role in gas recovery; however, the interactions between trapped shale gas and kerogens remain poorly understood due to the complex, heterogeneous microporous structure of kerogens. This study examines the diffusive behavior of methane molecules in kerogen matrices of different types (Type I, II, and II) and maturity levels (A to D for Type II kerogens) on a molecular scale. Models of each kerogen type were developed using simulated annealing. We employed grand canonical Monte Carlo simulations to predict the methane loadings of the kerogen models and then used equilibrium molecular dynamics simulations to compute the mean square displacement of methane molecules within the kerogen matrices under reservoir-relevant conditions, that is, 365 K and 275 bar. Our results show that methane self-diffusivity exhibits some degree of anisotropy in all kerogen types examined here except for Type I-A kerogens, where diffusion is the fastest and isotropic diffusion is observed. Self-diffusivity appears to correlate positively with pore volume for Type II kerogens, where an increase in diffusivity is observed with increasing maturity. Swelling of the kerogen matrix up to a 3% volume change is also observed upon methane adsorption. The findings contribute to a better understanding of hydrocarbon transport mechanisms in shale and may lead to further development of extraction techniques, fracturing fluids, and recovery predictions
- Published
- 2021
9. Microstructured antireflective encapsulant on concentrator solar cells
- Author
-
Philippe St-Pierre, Arnaud Ritou, Olivier Dellea, Gavin P. Forcade, Karin Hinzer, Abdelatif Jaouad, Maxime Darnon, Christopher E. Valdivia, Maite Volatier, Université d'Ottawa [Ontario] (uOttawa), Institut Interdisciplinaire d'Innovation Technologique [Sherbrooke] (3IT), Université de Sherbrooke (UdeS), Laboratoire Nanotechnologies et Nanosystèmes [Sherbrooke] (LN2), Université de Sherbrooke (UdeS)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), CEA Tech en régions (CEA-TECH-Reg), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
- Subjects
Materials science ,02 engineering and technology ,Concentrator ,01 natural sciences ,7. Clean energy ,law.invention ,antireflection ,external quantum efficiency ,law ,0103 physical sciences ,Concentrator photovoltaic ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Electrical and Electronic Engineering ,encapsulant ,010302 applied physics ,ray tracing ,Renewable Energy, Sustainability and the Environment ,business.industry ,microstructuring ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,TMM ,Electronic, Optical and Magnetic Materials ,Anti-reflective coating ,Optoelectronics ,Quantum efficiency ,Ray tracing (graphics) ,RCWA ,0210 nano-technology ,business ,concentrator photovoltaic - Abstract
International audience; Microstructured antireflective coatings (ARCs) can reduce reflection losses over a wide range of incidence angles when applied to the surface of a high-efficiency III-V photovoltaic cell in a concentrator photovoltaic (CPV) system. In this article, we present a microstructured ARC consisting of a monolayer of close-packed silica microbeads partially submerged within a polydimethylsiloxane (PDMS) cell encapsulant for use within a reference 500Â CPV submodule. Comparing a commercialized SiO x encapsulant to this microstructured coating with 25% submerged 1,000 nm-diameter beads, angle-dependent external quantum efficiency measurements yield a 2.6% current gain for the microstructured coating. Simulations demonstrate good agreement with measurements, predicting a 2.4% current gain for the same configuration. Extrapolating with our validated model, we estimate a maximum and achievable (within a large manufacturing tolerance) current gain of 3.4% and 2.9 ± 0.4% using 60% submerged and 10%-32% submerged 760 nm-diameter beads, respectively.
- Published
- 2021
10. Long-Term Stable Near-Infrared–Short-Wave-Infrared Photodetector Driven by the Photothermal Effect of Polypyrrole Nanostructures
- Author
-
Lionel Aigouy, Zhuoying Chen, Chenghao Xin, Hengyang Xiang, Xiaojiao Yuan, Zhelu Hu, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,solution-process ,Photodetector ,Nanoparticle ,02 engineering and technology ,010402 general chemistry ,Polypyrrole ,7. Clean energy ,01 natural sciences ,broadband photodetection ,[SPI.MAT]Engineering Sciences [physics]/Materials ,chemistry.chemical_compound ,polypyrrole nanostructures ,General Materials Science ,photothermal effect ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Solution process ,ComputingMilieux_MISCELLANEOUS ,Conductive polymer ,business.industry ,Near-infrared spectroscopy ,Photothermal effect ,long-term stability ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Rise time ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,0210 nano-technology ,business - Abstract
Polypyrrole (PPy) is a conductive polymer and widely applied in different applications owing to its broadband absorption in the UV-visible, near-infrared (NIR), and short-wave-infrared (SWIR) spectrum, excellent conductivity, and strong photothermal effect. In this work, we explored for the first time the photothermal effect of PPy nanoparticles (PPy-NPs) in a photothermal-induced detector structure and developed a new type of air-stable hybrid PPy-NPs/Pt photodetector (PD) with NIR/SWIR sensitivity. By combining PPy-NPs with a platinum (Pt)-resistive pattern, we fabricated PPy-NPs/Pt PDs that are sensitive to illumination in the wavelength range from 800 to 2000 nm. Under the illumination of λ = 1.5 μm, the maximum photoresponsivity was measured to be ∼1.3 A/W with a 131 μs photoresponse rise time. Owing to the excellent material stability from both PPy-NPs and the Pt pattern, the current photodetectors show long-term stable photoresponsivity when they were stored in air without encapsulation. The results suggest that the PPy-NPs/Pt hybrid PDs are promising candidates for a new type of low-cost and broadband due to their multiple advantages such as free of toxic heavy metals, air stability, and solution processing.
- Published
- 2021
11. Vacuum-field-induced THz transport gap in a carbon nanotube quantum dot
- Author
-
Audrey Cottet, Matthieu C. Dartiailh, Jérôme Tignon, Takis Kontos, M. M. Desjardins, L. C. Contamin, Matthieu R. Delbecq, Kazushi Yoshida, S. Massabeau, Kazuhiko Hirakawa, Juliette Mangeney, Tino Cubaynes, Zaki Leghtas, Sébastien Balibar, Simon Messelot, Sukhdeep Dhillon, Federico Valmorra, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institute of Industrial Science (IIS), The University of Tokyo (UTokyo), Physique Mésoscopique, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Nano-THz, Centre Automatique et Systèmes (CAS), MINES ParisTech - École nationale supérieure des mines de Paris, Théorie de la Matière Condensée, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris)
- Subjects
Photon ,Electronic properties and materials ,Band gap ,Science ,General Physics and Astronomy ,Physics::Optics ,02 engineering and technology ,Carbon nanotube ,7. Clean energy ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Article ,law.invention ,law ,0103 physical sciences ,Spontaneous emission ,010306 general physics ,Single photons and quantum effects ,Quantum fluctuation ,Physics ,Quantum optics ,[PHYS]Physics [physics] ,Multidisciplinary ,business.industry ,General Chemistry ,021001 nanoscience & nanotechnology ,Carbon nanotube quantum dot ,Quantum technology ,Optoelectronics ,0210 nano-technology ,business - Abstract
The control of light-matter interaction at the most elementary level has become an important resource for quantum technologies. Implementing such interfaces in the THz range remains an outstanding problem. Here, we couple a single electron trapped in a carbon nanotube quantum dot to a THz resonator. The resulting light-matter interaction reaches the deep strong coupling regime that induces a THz energy gap in the carbon nanotube solely by the vacuum fluctuations of the THz resonator. This is directly confirmed by transport measurements. Such a phenomenon which is the exact counterpart of inhibition of spontaneous emission in atomic physics opens the path to the readout of non-classical states of light using electrical current. This would be a particularly useful resource and perspective for THz quantum optics., Strong light-matter coupling has been realized at the level of single atoms and photons throughout most of the electromagnetic spectrum, except for the THz range. Here, the authors report a THz-scale transport gap, induced by vacuum fluctuations in carbon nanotube quantum dot through the deep strong coupling of a single electron to a THz resonator.
- Published
- 2021
12. Development of radioactive beams at ALTO: Part 1. Physicochemical comparison of different types of UCx targets using a multivariate statistical approach
- Author
-
Julien Guillot, B. Roussière, Sylvain Denis, Sandrine Tusseau-Nenez, François Brisset, Nicole Barré-Boscher, Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique de la matière condensée (LPMC), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Sud - Paris 11 (UP11)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie et des Matériaux Paris-Est (ICMPE), and Institut de Chimie du CNRS (INC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Materials science ,Physics - Instrumentation and Detectors ,FOS: Physical sciences ,chemistry.chemical_element ,Sintering ,02 engineering and technology ,Carbon nanotube ,01 natural sciences ,law.invention ,chemistry.chemical_compound ,law ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Porosity ,Instrumentation ,010302 applied physics ,Fission products ,Condensed Matter - Materials Science ,Aggregate (composite) ,Materials Science (cond-mat.mtrl-sci) ,Instrumentation and Detectors (physics.ins-det) ,021001 nanoscience & nanotechnology ,Microstructure ,chemistry ,Uranium carbide ,0210 nano-technology ,Biological system ,Carbon - Abstract
International audience; The optimization of the microstructure of the UCx target is a key point since many years in the field of ISOL method. The ultimate goal is to facilitate the release of the fission products, especially those with short half-lives. Fourteen UCx samples were synthetized from different uranium and carbon sources using three mixing protocols. All carburized samples were systematically characterized in terms of nature and proportion phases, grain and aggregate size, open and close porosity proportion and open pore size distribution. Our results were analysed using a multivariate statistical approach in order to remove any subjective bias. Strong correlations between the physicochemical characteristics of the samples as well as the impact of the synthesis process have been highlighted. In particular, using carbon nanotubes as carbon source combined with a new method of mixing is the key parameter to limit the sintering and to obtain samples with small grains and a high porosity well distributed over small pores. Moreover the microstructure obtained proved to be stable at high temperature.
- Published
- 2022
13. Development of Eco-Efficient Smart Electronics for Anticounterfeiting and Shock Detection Based on Printable Inks
- Author
-
Guido Sonnemann, Blandine Joyard-Pitiot, Romain Futsch, Antoine Iglesias, Gael Depres, Edis Glogic, Aline Rougier, Victor Thenot, Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Luquet-Duranton, Arjowiggins France, This work included in the SUPERSMART project has received funding from the European Institute of Innovation and Technology. This body of the European Union receives support from the European Union’s Horizon 2020 research and innovation program., European Project: 696076,H2020,H2020-EE-2015-3-MarketUptake,SuperSmart(2016), and Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,General Chemical Engineering ,label ,Nanotechnology ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,life cycle assessment ,shock detection ,sensor ,electrochromism ,Environmental Chemistry ,Electronics ,0105 earth and related environmental sciences ,piezoelectricity ,Renewable Energy, Sustainability and the Environment ,anticounterfeiting ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,[SPI.TRON]Engineering Sciences [physics]/Electronics ,Shock (mechanics) ,13. Climate action ,[SDE]Environmental Sciences ,printed electronics ,0210 nano-technology - Abstract
International audience; Printed electronics are expected to meet an increasing demand for improved functionality and autonomy of products in the context of Internet-of-Things. With this trend, the environmental performance of novel technologies is of growing importance. The current study presents the life cycle assessment of two novel devices: an anticounterfeit label based on the electrochromic display and a shock-detection tag based on the piezoelectric sensor, designed for the use in packaging of pharmaceuticals and luxury items to improve the safety and accountability in the supply chain. The devices are manufactured by means of energy-efficient printing techniques on a low-cost flexible and recyclable paper substrate. Comprehensive cradle-to-grave analysis contributes to industrial-scale energy and material life cycle inventories and identifies the main impact hotspots evaluated for a broad range of categories of the ReCiPe midpoint (H) impact assessment method. Results show that major impact burdens are associated with the near-field communication chip and radio-frequency identification antenna, while the impacts of solvents, process energy, electrochromic display/piezoelectric sensor, Li-ion battery, and substrate are comparatively small. In terms of their global warming potential, both the anticounterfeit label and shock-detection tag embody around 0.23 kg of CO2-equiv. Several material-use reduction and material-substitution strategies are quantified and discussed for their potential to reduce high impacts of the antenna.
- Published
- 2021
14. Porous functionalized polymers enable generating and transporting hyperpolarized mixtures of metabolites
- Author
-
James G. Kempf, Jonas Milani, Sami Jannin, Morgan Ceillier, Quentin Stern, Basile Vuichoud, Damien Montarnal, Marc Schnell, Dmitry Eshchenko, Samuel F. Cousin, Roberto Melzi, Théo El Daraï, Aurélien Bornet, Olivier Cala, Laurent Gremillard, Catalyse, Polymérisation, Procédés et Matériaux (CP2M), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre de RMN à très hauts champs de Lyon (CRMN), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Bruker BioSpin [Billerica, MA], Bruker Biospin, Bruker, Bruker BioSpin, Matériaux, ingénierie et science [Villeurbanne] (MATEIS), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
Nitroxide mediated radical polymerization ,Materials science ,Science ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,Hyperpolarization (physics) ,Polarization (electrochemistry) ,Dissolution ,chemistry.chemical_classification ,Multidisciplinary ,Aqueous solution ,Relaxation (NMR) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,Polymer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,Spin diffusion ,Polymer synthesis ,0210 nano-technology ,Solution-state NMR - Abstract
Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) has enabled promising applications in spectroscopy and imaging, but remains poorly widespread due to experimental complexity. Broad democratization of dDNP could be realized by remote preparation and distribution of hyperpolarized samples from dedicated facilities. Here we show the synthesis of hyperpolarizing polymers (HYPOPs) that can generate radical- and contaminant-free hyperpolarized samples within minutes with lifetimes exceeding hours in the solid state. HYPOPs feature tunable macroporous porosity, with porous volumes up to 80% and concentration of nitroxide radicals grafted in the bulk matrix up to 285 μmol g−1. Analytes can be efficiently impregnated as aqueous/alcoholic solutions and hyperpolarized up to P(13C) = 25% within 8 min, through the combination of 1H spin diffusion and 1H → 13C cross polarization. Solutions of 13C-analytes of biological interest hyperpolarized in HYPOPs display a very long solid-state 13C relaxation times of 5.7 h at 3.8 K, thus prefiguring transportation over long distances., Hyperpolarization by dissolution dynamic nuclear polarization has brought highly sensitive magnetic resonance to reality but there still remains severe limitations. Here the authors show an approach relying on the generation of hyperpolarizing polymers that bear a dual function.
- Published
- 2021
15. Advances in Clayff Molecular Simulation of Layered and Nanoporous Materials and Their Aqueous Interfaces
- Author
-
Jeffery A. Greathouse, Andrey G. Kalinichev, Randall T. Cygan, Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
- Subjects
[PHYS]Physics [physics] ,Aqueous solution ,Materials science ,Nanoporous ,Molecular simulation ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,Physical and Theoretical Chemistry ,0210 nano-technology - Abstract
International audience; As a general-purpose force field for molecular simulations of layered materials and their fluid interfaces, Clayff continues to see broad usage in atomistic computational modeling for numerous geoscience and materials science applications due to its (1) success in predicting properties of bulk nanoporous materials and their interfaces, (2) transferability to a range of layered and nanoporous materials, and (3) simple functional form which facilitates incorporation into a variety of simulation codes. Here, we review applications of Clayff to model bulk phases and interfaces not included in the original parameter set and recent modifications for modeling surface terminations such as hydroxylated nanoparticle edges. We conclude with a discussion of expectations for future developments.
- Published
- 2021
16. Statistical Nonlinear Optical Mapping of Localized and Delocalized Plasmonic Modes in Disordered Gold Metasurfaces
- Author
-
Sylvain Gigan, Sébastien Bidault, Samuel Gresillon, Gauthier Roubaud, Institut Langevin - Ondes et Images (UMR7587) (IL), Sorbonne Université (SU)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Paris (UP)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Kastler Brossel (LKB (Lhomond)), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Materials science ,business.industry ,Physics::Optics ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Nonlinear optical ,Delocalized electron ,0103 physical sciences ,Optoelectronics ,[PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn] ,Electrical and Electronic Engineering ,010306 general physics ,0210 nano-technology ,business ,Plasmon ,Biotechnology - Abstract
International audience; Using a statistical analysis of nonlinear luminescence images measured with randomly wavefront-shaped femtosecond excitations, we provide direct insight on both the localized and delocalized plasmonic modes featured by disordered gold metasurfaces. We can image independently areas where far-field wavefront shaping can control the optical properties, and areas with strong subwavelength optical hotspots. In practice, the fraction of the disordered plasmonic surface on which wavefront control is feasible depends strongly on the nanoscale morphology of the sample. Close to the percolation threshold, the entire surface is sensitive to wavefront shaping and we observe the largest densities of delocalized modes as well as the strongest optical hotspots. These results demonstrate how statistical imaging schemes can offset the complexity of disordered nanophotonic systems in order to characterize their optical properties.
- Published
- 2021
17. Comparison Between Ray-Tracing and Full-Wave Simulation for Transcranial Ultrasound Focusing on a Clinical System Using the Transfer Matrix Formalism
- Author
-
Philippe Annic, Yeruham Shapira, Mickael Tanter, Itay Rachmilevitch, Alexandre Houdouin, Jean-François Aubry, Thomas Bancel, Physique pour la médecine (UMR 8063, U1273), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
clinical system ,Insightec ,Acoustics and Ultrasonics ,Phased array ,Acoustics ,transcranial focusing ,Phase (waves) ,02 engineering and technology ,aberration correction ,law.invention ,03 medical and health sciences ,law ,Hounsfield scale ,Humans ,ray-tracing ,Computer Simulation ,Electrical and Electronic Engineering ,Instrumentation ,Image resolution ,Ultrasonography ,030304 developmental biology ,Physics ,0303 health sciences ,k-wave toolbox ,Hydrophone ,ultrasound ,business.industry ,Skull ,Ultrasound ,Brain ,HIFU ,021001 nanoscience & nanotechnology ,numerical modeling ,Pressure measurement ,[PHYS.PHYS.PHYS-MED-PH]Physics [physics]/Physics [physics]/Medical Physics [physics.med-ph] ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,Ray tracing (graphics) ,Tomography, X-Ray Computed ,0210 nano-technology ,business - Abstract
International audience; Only one High Intensity Focused Ultrasound device has been clinically approved for transcranial brain surgery at the time of writing. The device operates within 650 kHz and 720 kHz and corrects the phase distortions induced by the skull of each patient using a multi-element phased array. Phase correction is estimated adaptively using a proprietary algorithm based on computed-tomography (CT) images of the patient's skull. In this paper, we assess the performance of the phase correction computed by the clinical device and compare it to (i) the correction obtained with a previously validated full-wave simulation algorithm using an open-source pseudo-spectral toolbox and (ii) a hydrophone-based correction performed invasively to measure the aberrations induced by the skull at 650 kHz. For the full-wave simulation, three different mappings between CT Hounsfield units and the longitudinal speed of sound inside the skull were tested. All methods are compared with the exact same setup thanks to transfer matrices acquired with the clinical system for N=5 skulls and T=2 different targets for each skull. We show that the clinical ray-tracing software and the full-wave simulation restore respectively 84±5% and 86±5% of the pressure obtained with hydrophone-based correction for targets located in central brain regions. On the second target (off-center), we also report that the performance of both algorithms degrades when the average incident angles of the acoustic beam at the skull surface increases. When incident angles are higher than 20°, the restored pressure drops below 75% of the pressure restored with hydrophone-based correction.
- Published
- 2021
18. Different Water Networks Confined in Unidirectional Hydrophilic Nanopores and Transitions with Temperature
- Author
-
Frederico G. Alabarse, Stefan Klotz, Livia E. Bove, Benoit Baptiste, Jean-Blaise Brubach, Julien Haines, Benoit Coasne, Mónica Jiménez-Ruiz, Henry E. Fischer, Pascale Roy, Elettra Sincrotrone Trieste, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Laue-Langevin (ILL), ILL, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), ligne AILES, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
zeolite water diffusion nano confinement ,Materials science ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Nanopore ,General Energy ,Chemical physics ,Physical and Theoretical Chemistry ,0210 nano-technology - Abstract
International audience; The structure and vibrational properties of water molecules confined in unidirectional hydrophilic nanopores of AlPO4-54·xH2O were investigated from room temperature down to 10 K by single-crystal synchrotron X-ray diffraction, neutron pair-distribution function analysis, incoherent inelastic neutron scattering, far- and mid-infrared spectroscopy, ab initio molecular dynamics, and grand canonical Monte Carlo simulations. The ensemble of results indicates that water confined in AlPO4-54·xH2O nanopores does not crystallize down to 10 K and points at the existence of two different types of water networks, whose local arrangement and dynamical behavior become more and more distinguished when lowering the temperature below 150 K. Upon cooling, water close to the zeolite pore wall shows a highly ordered local arrangement induced by the pore wall, with a more defined site occupancy and lower density with respect to bulk water. Conversely, water in the pore core shows a denser, more disordered, and orientationally distorted arrangement and a glassy like behavior down to the lowest investigated temperature.
- Published
- 2021
19. Rod-Like Nanoparticles with Striped and Helical Topography
- Author
-
Tina I. Löbling, Johanna Majoinen, Olli Ikkala, André H. Gröschel, Nonappa, Maria Morits, Jani-Markus Malho, Felix H. Schacher, Department of Applied Physics [Aalto], Aalto University, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 3 LCPO : Polymer Self-Assembly & Life Sciences, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany], Lab Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM), Institute of Organic Chemistry and Macromolecular Chemistry and Jena Center for Soft Matter (JCSM), Physical Chemistry and Center for Nanointegration (CENIDE), and Universität Duisburg-Essen [Essen]
- Subjects
CELLULOSE NANOCRYSTALS ,Materials science ,MULTICOMPARTMENT MICELLES ,Polymers and Plastics ,ta221 ,PATCHY NANOPARTICLES ,SHELL ,Shell (structure) ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Inorganic Chemistry ,Colloid ,Materials Chemistry ,Copolymer ,PARTICLES ,MICELLAR INTERPOLYELECTROLYTE COMPLEXES ,chemistry.chemical_classification ,Organic Chemistry ,NANOSTRUCTURED MATERIALS ,Polymer ,Physik (inkl. Astronomie) ,021001 nanoscience & nanotechnology ,COLLOIDS ,3d topography ,0104 chemical sciences ,BLOCK-COPOLYMERS ,Cellulose nanocrystals ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Transmission electron microscopy ,POLYMERS ,0210 nano-technology - Abstract
International audience; The behavior of nanoparticles in solution is largely dominated by their shape and interaction potential. Despite considerable progress in the preparation of patchy and compartmentalized particles, access to nanoparticles with complex surface patterns and topographies remains limited. Here, we show that polyanionic brushes tethered to rod-like cellulose nanocrystals (CNCs) spontaneously develop a striped or helical topography through interpolyelectrolyte complexation with polycationic diblock copolymers. Using cryogenic transmission electron microscopy (cryo-TEM) and tomography (cryo-ET), we follow the complexation process and analyze the delicate 3D topography on the CNC surface. The described approach is facile and modular and can be extended to other block chemistries, nanoparticles, and surfaces, thereby providing a versatile platform toward surface-patterned particles with complex topographies and spatially arranged functional groups.
- Published
- 2022
20. Insight into the Formation and Stability of Solid Electrolyte Interphase for Nanostructured Silicon-Based Anode Electrodes Used in Li-Ion Batteries
- Author
-
Mariam Ezzedine, Lucie Leveau, Fatme Jardali, Eleonor Caristan, Mihai-Robert Zamfir, Ovidiu Ersen, Ileana Florea, Costel Sorin Cojocaru, Laboratoire de physique des interfaces et des couches minces [Palaiseau] (LPICM), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), National Institute for Laser, Plasma and Radiation Physics (INFLPR), RENAULT, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Cojocaru, Costel Sorin, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Battery (electricity) ,[CHIM.MATE] Chemical Sciences/Material chemistry ,Materials science ,Passivation ,Silicon ,chemistry.chemical_element ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,Electrolyte ,Current collector ,010402 general chemistry ,021001 nanoscience & nanotechnology ,7. Clean energy ,01 natural sciences ,0104 chemical sciences ,Anode ,chemistry ,Chemical engineering ,Electrode ,General Materials Science ,0210 nano-technology ,Layer (electronics) - Abstract
International audience; Silicon-based anode fabrication with nanoscale structuration improves the energy density and life cycle of Li-ion batteries. As-synthesized silicon (Si) nanowires (NWs) or nanoparticles (NPs) directly on the current collector represent a credible alternative to conventional graphite anodes. However, the operating potentials of these electrodes are below the electrochemical stability window of all electrolytes used in commercial Li-ion systems. During the first charging phase of the cell, partial decomposition of the electrolyte takes place, which leads to the formation of a layer at the surface of the electrode, called solid electrolyte interphase (SEI). A stable and continuous SEI layer formation is a critical factor to achieve reliable lifetime stability of the battery. Once formed, the SEI acts as a passivation layer that minimizes further degradation of the electrolyte during cycling, while allowing lithium-ion diffusion with their subsequent insertion into the active material and ensuring reversible operation of the electrode. However, one of the major issues requiring deeper investigation is the assessment of the morphological extension of the SEI layer into the active material, which is one of the main parameters affecting the anode performances. In the present study, we use electron tomography with a low electron dose to retrieve three-dimensional information on the SEI layer formation and its stability around SiNWs and SiNPs. The possible mechanisms of SEI evolution could be inferred from the interpretation and analysis of the reconstructed volumes. Significant volume variations in the SiNW and an inhomogeneous distribution of the SEI layer around the NWs are observed during cycling and provide insights into the potential mechanism leading to the generally reported SiNW anode capacity fading. By contrast, analysis of the reconstructed SiNPs’ volume for a sample undergoing one lithiation–delithiation cycle shows that the SEI remains homogeneously distributed around the NPs that retain their spherical morphology and points to the potential benefit of such nanoscale Si anode materials to improve their cycling lifetime.
- Published
- 2021
21. Effects of the Chemical and Structural Properties of Silane Monolayers on the Organization of Water Molecules and Ions at Interfaces, from Molecular Dynamics Simulations
- Author
-
Antonin Lavigne, Solène Lecot, Zihua Yang, Magali Phaner-Goutorbe, Christelle Yeromonahos, Yann Chevolot, INL - Chimie et Nanobiotechnologies (INL - C&N), Institut des Nanotechnologies de Lyon (INL), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)
- Subjects
Materials science ,[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Molecular dynamics ,chemistry.chemical_compound ,Adsorption ,Monolayer ,Electrochemistry ,Molecule ,General Materials Science ,ComputingMilieux_MISCELLANEOUS ,Spectroscopy ,Alkyl ,chemistry.chemical_classification ,Biomolecule ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Surfaces and Interfaces ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Silane ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,chemistry ,Chemical engineering ,Surface modification ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,0210 nano-technology - Abstract
Understanding the organization of the hydration layer at functionalized silica surfaces is relevant for a large range of biosensing applications or surface phenomena such as biomolecule adsorption. Silane monolayers are widely used to functionalize silica surfaces. Using molecular dynamics simulations, we have investigated the role of silane molecule head-group charge, alkyl chain length, and surface coverage in the structural organization and dynamic properties of Na+ ions, Cl- ions, and water molecules at the interface. The silane molecules studied are 3-aminopropyldimethylethoxysilane, n-propyldimethylmethoxysilane, octadecyldimethylmethoxysilane, and (dimethylamino)dimethylsilylundecanoate. Our results suggest that the distribution of interfacial ions is sensitive to the 2D dispersion of the silane-charged head groups. Also, while charged silane monolayers show a strong orientation of interfacial water molecules, which leads to a rupture in the hydrogen bond network and disturbs their tetrahedral organization, the arrangement of water molecules at the interface with uncharged silane monolayers seems to be related to the surface roughness and to alkyl chain length. In line with these results, the diffusion of ions and water molecules is higher at the CH3 long monolayer interface than at the CH3 short monolayer interface and at the charged monolayer interfaces. Also, whatever the silane molecules studied, bulk properties are recovered around 0.7 nm above the interface. The interfacial water organization is known to impact biomolecule adsorption. Therefore, these results could further help in optimizing the functionalization layers to capture analytes.
- Published
- 2021
22. A microfluidic dosimetry cell to irradiate solutions with poorly penetrating radiations: a step towards online dosimetry for synchrotron beamlines
- Author
-
Pascal Mercère, Stéphane Lefrançois, Jean Philippe Renault, Lucie Huart, Jérôme Palaudoux, Marie Anne Hervé du Penhoat, Jean Michel Guigner, Paulo Dasilva, Christophe Nicolas, Corinne Chevallard, Charlie Gosse, Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire (LIONS), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut de biologie de l'ENS Paris (UMR 8197/1024) (IBENS), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie de l'ENS Paris (IBENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), ANR-17-CE30-0017,HighEneCh,Chimie déclenchée par des photons de haute énergie(2017), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Département de Biologie - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Palacin, Serge
- Subjects
Nuclear and High Energy Physics ,water radiolysis ,Materials science ,microfluidics ,Linear energy transfer ,Synchrotron radiation ,02 engineering and technology ,Radiation ,010403 inorganic & nuclear chemistry ,7. Clean energy ,01 natural sciences ,law.invention ,Ionizing radiation ,soft X-rays ,law ,Dosimetry ,Radiometry ,Instrumentation ,[CHIM.MATE] Chemical Sciences/Material chemistry ,Dosimeter ,dosimetry ,Radiation Dosimeters ,X-Rays ,Radiochemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Research Papers ,Synchrotron ,0104 chemical sciences ,Radiolysis ,0210 nano-technology ,Synchrotrons - Abstract
The application of a microfluidic cell, specifically optimized for low penetrating soft X-ray radiation, as a dosimetry cell is reported. An analysis of the important parameters of the microfluidic cell, as well as their influences over dosimetry, is also reported. Measurements at 1.28 keV led to the determination of a hydroxyl production yield, G(HO.), of 0.025 ± 0.004 µmol J−1., Synchrotron radiation can induce sample damage, whether intended or not. In the case of sensitive samples, such as biological ones, modifications can be significant. To understand and predict the effects due to exposure, it is necessary to know the ionizing radiation dose deposited in the sample. In the case of aqueous samples, deleterious effects are mostly induced by the production of reactive oxygen species via water radiolysis. These species are therefore good indicators of the dose. Here the application of a microfluidic cell specifically optimized for low penetrating soft X-ray radiation is reported. Sodium benzoate was used as a fluorescent dosimeter thanks to its specific detection of hydroxyl radicals, a radiolytic product of water. Measurements at 1.28 keV led to the determination of a hydroxyl production yield, G(HO.), of 0.025 ± 0.004 µmol J−1. This result is in agreement with the literature and confirms the high linear energy transfer behavior of soft X-rays. An analysis of the important parameters of the microfluidic dosimetry cell, as well as their influences over dosimetry, is also reported.
- Published
- 2021
23. New Insights into the Formulation and Polymerization of Pickering Emulsions Stabilized by Natural Organic Particles
- Author
-
Valérie Héroguez, Valentin Maingret, Véronique Schmitt, Hanaé Dupont, Team 1 LCPO : Polymerization Catalyses & Engineering, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre de Recherche Paul Pascal (CRPP), Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université de Bordeaux
- Subjects
Materials science ,Polymers and Plastics ,Organic Chemistry ,Radical polymerization ,Nanotechnology ,Pickering emulsions ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,radical polymerization ,01 natural sciences ,Pickering emulsion ,0104 chemical sciences ,Microsphere ,stimuli-responsiveness ,Inorganic Chemistry ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymerization ,Materials Chemistry ,0210 nano-technology ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
International audience; Pickering emulsions are known to be an efficient and greener alternative to surfactant-stabilized emulsions. Particles, as key component of these systems, are responsible for their higher kinetic stability, and in recent years, the use of natural organic stabilizers has emerged as a solution to promote sustainability. By conferring them stimuli-responsiveness and/or by polymerizing the Pickering emulsion itself, the design of smart and advanced systems can be achieved. Radical polymerization has been by far the most studied polymerization route, and a wide range of materials were successfully synthesized: foams, composites, capsules, or imprinted microspheres. Not only the sustainability of these materials is improved, but also their performances and features are also generally enhanced thanks to the presence of the natural organic stabilizers. This Perspective is putting into light groundbreaking efforts in the field of the polymerization of Pickering emulsions, suggesting the range of accessible material that can be obtained through this powerful pathway.
- Published
- 2021
24. Multi-layer MoS2-Based Plasmonic Gold Nanowires at Near-Perfect Absorption for Energy Harvesting
- Author
-
Zakariae Oumekloul, Shuwen Zeng, A. Mir, Abdellatif Akjouj, Younes Achaoui, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Photonique Fibre et Sources Cohérentes (XLIM-PHOT), XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), Physique - IEMN (PHYSIQUE - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), and A. Akjouj gratefully acknowledges the hospitality of the department of Physics, Faculty of Science, University of Moulay Ismail of Meknes. This work was partially supported by the program FINCOME 'Centre National pour la Recherche Scientifque et Technique, Morocco'.
- Subjects
Biophysics ,Nanowire ,Metamaterial ,Gold nanowires ,02 engineering and technology ,Localized surface plasmon resonance ,2D materials ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,Engineering physics ,Transition metal dichalcogenides ,law.invention ,010309 optics ,[SPI]Engineering Sciences [physics] ,Material selection ,law ,Smart city ,0103 physical sciences ,Solar cell ,0210 nano-technology ,Absorption (electromagnetic radiation) ,Energy harvesting ,Plasmon ,Biotechnology - Abstract
International audience; One of the biggest challenges in relation to the modernistic vision of smart city technology is to provide confdent autonomous energy, notably in terms of power storage. If you want to change an existing lifestyle, you cannot ignore the basic concepts collected from basic physics. The subject of Metamaterials stands for an important research area that can be explored and used to come up with unparalleled ideas about the properties and functions that are completely absent from natural materials. In contrast to other bold technologies, combining a simple layered surface with appropriate material selection makes it possible to pattern and manufacture new types of solar cells that work in a wide frequency range. In this article, we propose a simple method to boost the coupling interaction between metallic gold nanowires with multiple MoS2 layers. The innovation of this work is that the thickness layer changes have great stability in the infuence of the absorption performance and electric feld distribution in the visible light and near-infrared spectra. Therefore, this new design can be seen as very important in many felds from sensing to solar cell applications
- Published
- 2021
25. Millimeter wave photonics with terahertz semiconductor lasers
- Author
-
Juliette Mangeney, Jérôme Tignon, Raffaele Colombelli, Katia Garrasi, Edmund H. Linfield, Sarah Houver, Valentino Pistore, Lianhe Li, P-B. Vigneron, S. S. Dhillon, Hanond Nong, Alexander Giles Davies, Miriam S. Vitiello, Nano-THz, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), National Enterprise for nanoScience and nanoTechnology (NEST), Scuola Normale Superiore di Pisa (SNS)-Scuola Universitaria Superiore Sant'Anna [Pisa] (SSSUP)-Istituto Italiano di Tecnologia (IIT)-Consiglio Nazionale delle Ricerche [Pisa] (CNR PISA), DOTA, ONERA, Université Paris Saclay [Palaiseau], ONERA-Université Paris-Saclay, University of Leeds, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Photon ,Nonlinear optics ,Terahertz radiation ,Physics::Instrumentation and Detectors ,Science ,General Physics and Astronomy ,Quantum cascade lasers ,Physics::Optics ,02 engineering and technology ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Article ,Semiconductor laser theory ,law.invention ,010309 optics ,Quantum defect ,law ,0103 physical sciences ,Terahertz optics ,Astrophysics::Galaxy Astrophysics ,[PHYS]Physics [physics] ,Physics ,Multidisciplinary ,business.industry ,Energy conversion efficiency ,General Chemistry ,021001 nanoscience & nanotechnology ,Laser ,Cascade ,Extremely high frequency ,Microwave photonics ,Optoelectronics ,Photonics ,0210 nano-technology ,business ,Ultrashort pulse - Abstract
Millimeter wave (mmWave) generation using photonic techniques has so far been limited to the use of near-infrared lasers that are down-converted to the mmWave region. However, such methodologies do not currently benefit from a monolithic architecture and suffer from the quantum defect i.e. the difference in photon energies between the near-infrared and mmWave region, which can ultimately limit the conversion efficiency. Miniaturized terahertz (THz) quantum cascade lasers (QCLs) have inherent advantages in this respect: their low energy photons, ultrafast gain relaxation and high nonlinearities open up the possibility of innovatively integrating both laser action and mmWave generation in a single device. Here, we demonstrate intracavity mmWave generation within THz QCLs over the unprecedented range of 25 GHz to 500 GHz. Through ultrafast time resolved techniques, we highlight the importance of modal phases and that the process is a result of a giant second-order nonlinearity combined with a phase matched process between the THz and mmWave emission. Importantly, this work opens up the possibility of compact, low noise mmWave generation using modelocked THz frequency combs., Photonic solutions for generating free space millimeter radiation is a fast developing field that combines optoelectronics and RF domains but has many challenges. Here the authors present a quantum cascade laser (QCL) based solution for THz laser emission and millimeter wave generation in a single device.
- Published
- 2021
26. Online Monitoring of the Particle Size in Semibatch Emulsion Copolymerization Using Spatially Resolved Spectroscopy and Raman Spectroscopy
- Author
-
Manis Gheghiani, Noémie Caillol, Timothy F. L. McKenna, Nida Sheibat-Othman, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon, Laboratoire d'automatique, de génie des procédés et de génie pharmaceutique (LAGEPP), Université de Lyon-Université de Lyon-École Supérieure Chimie Physique Électronique de Lyon-Centre National de la Recherche Scientifique (CNRS), Axel'One, Laboratoire de Chimie, Catalyse, Polymères et Procédés, R 5265 (C2P2), and Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,General Chemical Engineering ,Spatially resolved ,Analytical chemistry ,02 engineering and technology ,General Chemistry ,021001 nanoscience & nanotechnology ,Industrial and Manufacturing Engineering ,symbols.namesake ,020401 chemical engineering ,symbols ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Particle size ,0204 chemical engineering ,0210 nano-technology ,Raman spectroscopy ,Spectroscopy ,Suspension (vehicle) ,ComputingMilieux_MISCELLANEOUS ,Emulsion copolymerization - Abstract
Spatially resolved spectroscopy (SRS), based on near-infrared, is better adapted to extract physical information (here, particle size) than classical spectroscopy in heterogeneous media (suspension...
- Published
- 2021
27. Molecularly imprinted polymers in miniaturized extraction and separation devices
- Author
-
Thomas Bouvarel, Valérie Pichon, Nathalie Delaunay, Laboratoire Sciences Analytiques, Bioanalytiques, et Miniaturisation (LSABM), Chimie-Biologie-Innovation (UMR 8231) (CBI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), and Sorbonne Université (SU)
- Subjects
Materials science ,Filtration and Separation ,Nanotechnology ,02 engineering and technology ,01 natural sciences ,Separation ,Analytical Chemistry ,Electrochromatography ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Miniaturization ,Solid phase extraction ,Monolith ,Molecularly imprinted polymer ,Solid-phase extraction ,geography ,geography.geographical_feature_category ,010401 analytical chemistry ,Extraction (chemistry) ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymerization ,Magnetic nanoparticles ,0210 nano-technology - Abstract
International audience; Molecularly imprinted polymers are highly selective and cost-effective materials, which have attracted significant interest in various areas such as sample pretreatment and chromatographic and electrophoretic separations. This review aims to present the state of the art concerning the miniaturization of these materials in order to meet the societal demand for reliable, fast, cheap, and solvent/sample saving analyses. The polymerization route specificities for the production of miniaturized molecularly imprinted polymers in capillaries or chip channels such as open tubular, packed particles, magnetic nanoparticles, and in situ imprinted monoliths are investigated. Their performances as selective supports in solid phase extraction and as stationary phases in electrochromatography and liquid chromatography, as well as their possible perspectives are discussed.
- Published
- 2021
28. Functional Polyethylenes by Organometallic-Mediated Radical Polymerization of Biobased Carbonates
- Author
-
Christophe Detrembleur, Philip Scholten, Antoine Debuigne, Henri Cramail, Grégory Cartigny, Bruno Grignard, Michael A. R. Meier, Team 2 LCPO : Biopolymers & Bio-sourced Polymers, Laboratoire de Chimie des Polymères Organiques (LCPO), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Polymers and Plastics ,Polymers ,Radical polymerization ,Carbonates ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Polymerization ,Inorganic Chemistry ,chemistry.chemical_compound ,Materials Chemistry ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,business.industry ,Organic Chemistry ,Fossil fuel ,Polymer ,Polyethylene ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Renewable energy ,Molecular Weight ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,chemistry ,0210 nano-technology ,business - Abstract
Partly or fully renewable (co)polymers are gaining interest in both academia and industry. Polyethylene is a widely used polymer, classically derived from fossil fuels, with a high versatility stemming from the introduction of comonomers altering the mechanical properties. The introduction of renewable functionalities into this polymer is highly attractive to obtain functional, tunable, and at least partially renewable polyethylenes. We herein report the introduction of biosourced cyclic carbonates into polyethylene using organometallic-mediated radical polymerization under mild conditions. Molecular weights of up to 14 600 g mol
- Published
- 2021
29. Van Hove Singularities and Trap States in Two-Dimensional CdSe Nanoplatelets
- Author
-
Nathali Alexandra Franchina Vergel, Christophe Delerue, Iwan Moreels, Dominique Deresmes, Bruno Grandidier, Y. Lambert, Nemanja Peric, Ali Hossain Khan, Shalini Singh, Maxime Berthe, Zeger Hens, Louis Biadala, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Physique - IEMN (PHYSIQUE - IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Universiteit Gent = Ghent University [Belgium] (UGENT), Plateforme de Caractérisation Multi-Physiques - IEMN (PCMP - IEMN), This study was financially supported by the European Community’s H2020 Program (Grant No. PITN-GA-2016-722176, 'Indeed' Project), the EQUIPEX program Excelsior (Grant No. ANR-11-EQPX-0015), the RENATECH network, the Agence National de la Recherche (Grant No. ANR-19-CE09-0022, 'TROPICAL' Project), and I-SITE ('PRIVET' project). This project has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 714876 PHOCONA). We also acknowledge the TEM facility of the Nematology Research Unit, member of the UGent TEM-Expertise Centre (life sciences)., Renatech Network, PCMP PCP, ANR-11-EQPX-0015,Excelsior,Centre expérimental pour l'étude des propriétés des nanodispositifs dans un large spectre du DC au moyen Infra-rouge.(2011), European Project: 722176,H2020, H2020-MSCA-ITN-2016,INDEED(2017), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), and Universiteit Gent = Ghent University (UGENT)
- Subjects
Nanostructure ,Flatness (systems theory) ,Scanning tunneling spectroscopy ,Bioengineering ,02 engineering and technology ,dimensionality ,CdSe ,quantum confinement ,Tight binding ,nanocrystals ,General Materials Science ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Quantum well ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Condensed matter physics ,business.industry ,Mechanical Engineering ,nanoplatelets ,General Chemistry ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Semiconductor ,Quantum dot ,Density of states ,0210 nano-technology ,business - Abstract
International audience; Semiconductor nanoplatelets, which offer a compelling combination of the flatness of two-dimensional semiconductors and the inherent richness brought about by colloidal nanostructure synthesis, form an ideal and general testbed to investigate fundamental physical effects related to the dimensionality of semiconductors. With low temperature scanning tunnelling spectroscopy and tight binding calculations, we investigate the conduction band density of states of individual CdSe nanoplatelets. We find an occurrence of peaks instead of the typical steplike function associated with a quantum well, that rule out a free in-plane electron motion, in agreement with the theoretical density of states. This finding, along with the detection of deep trap states located on the edge facets, which also restrict the electron motion, provides a detailed picture of the actual lateral confinement in quantum wells with finite length and width.
- Published
- 2021
30. Optimization of Polyethylene Grade Transitions in Fluidized Bed Reactors with Constraints on the Polymer Sticking Temperature
- Author
-
Nida Sheibat-Othman, Sabrine Kardous, Timothy F. L. McKenna, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon, Laboratoire d'automatique, de génie des procédés et de génie pharmaceutique (LAGEPP), Université de Lyon-Université de Lyon-École Supérieure Chimie Physique Électronique de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie, Catalyse, Polymères et Procédés, R 5265 (C2P2), and Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
chemistry.chemical_classification ,Work (thermodynamics) ,Materials science ,General Chemical Engineering ,Melting temperature ,02 engineering and technology ,General Chemistry ,Polymer ,Polyethylene ,021001 nanoscience & nanotechnology ,Industrial and Manufacturing Engineering ,Polyolefin ,chemistry.chemical_compound ,020401 chemical engineering ,chemistry ,Fluidized bed ,Particle ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,0204 chemical engineering ,Composite material ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
In gas-phase polyolefin processes, it is important to evaluate the melting temperature of particles since exceeding this temperature may cause particle sticking and aggregation. In this work, a mod...
- Published
- 2021
31. Non-destructive depth-dependent morphological characterization of ferroelectric:semiconducting polymer blend films
- Author
-
Mario Maglione, Georges Hadziioannou, Eleni Pavlopoulou, N. Spampinato, Gilles Pecastaings, Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), The authors acknowledge receiving funding from the Labex AMADEus (ANR-10-LABEX-0042-AMADEUS) and the French state Initiative d’Excellence IdEx (ANR-10-IDEX-003-02). Financial support from the HOMERIC Industrial Chair (Arkema/ANR) with the grant agreement no AC-2013-365 is also acknowledged., ANR-10-LABX-0042,AMADEus,Advanced Materials by Design(2010), and ANR-10-IDEX-0003,IDEX BORDEAUX,Initiative d'excellence de l'Université de Bordeaux(2010)
- Subjects
non-volatile memories Declarations ,Materials science ,Polymers and Plastics ,scanning probe microscopy ,02 engineering and technology ,Substrate (electronics) ,010402 general chemistry ,01 natural sciences ,P3HT ,Scanning probe microscopy ,Colloid and Surface Chemistry ,morphology ,Microscopy ,Materials Chemistry ,Physical and Theoretical Chemistry ,Composite material ,Thin film ,Kelvin probe force microscope ,[CHIM.MATE]Chemical Sciences/Material chemistry ,P(VDF-co-TrFE) ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Piezoresponse force microscopy ,Polymer blend ,0210 nano-technology ,Layer (electronics) ,polymer blends - Abstract
International audience; Herein we investigate the technologically relevant blend of the ferroelectric polymer poly(vinylidene fluorideco-trifluoroethylene), P(VDF-co-TrFE), with the semiconducting polymer poly(3-hexylthiophene), P3HT, by means of a combination of Scanning Probe Microscopy techniques, namely Atomic Force Microscopy, Conductive Force Microscopy, Kelvin Probe Force Microscopy and Piezoresponse Force Microscopy. This combination proves to be a powerful tool for the non-destructive morphological reconstruction of multifunctional nano-structured thin films, as those under study. Each modality allows discerning the two blend constituents based on their functionality, and, additionally, probes layers of different thickness with respect to the films surface. The depth-dependent information that is collected allows a qualitative reconstruction of the blend's composition and morphology both in-plane and out-of-plane of the film. We demonstrate that P3HT exhibits the tendency to reside the film surface at an almost constant composition of 15%, independent of blend's composition. Increasing the P3HT content in the blend results in the segregation of P3HT at the upper layers of the films, partially buried below a P(VDF-co-TrFE) superficial layer. The depletion of P3HT from the substrate/film interface is reflected by the poor existence of conducting pathways that connect the top and bottom planes of the film. The three-dimensional morphology of this polymer blend that is revealed thanks to the employed techniques deviates substantially from the ideal morphology proposed for the efficient performance of the targeted memory devices.
- Published
- 2021
32. Bio-Based Polyricinoleate and Polyhydroxystearate: Properties and Evaluation as Viscosity Modifiers for Lubricants
- Author
-
Etienne Grau, Jean-François Le Meins, Henri Cramail, Hélène Méheust, Team 2 LCPO : Biopolymers & Bio-sourced Polymers, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and Team 3 LCPO : Polymer Self-Assembly & Life Sciences
- Subjects
Condensation polymer ,Polymers and Plastics ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,polyhydroxystearate ,Viscosity ,Rheology ,medicine ,Thermal stability ,Lubricant ,Mineral oil ,thickeners ,Chemistry ,Process Chemistry and Technology ,Organic Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Polyester ,[CHIM.POLY]Chemical Sciences/Polymers ,viscosity index ,Chemical engineering ,viscosity modifiers ,lubricant ,Viscosity index ,0210 nano-technology ,polyricinoleate ,medicine.drug - Abstract
International audience; This paper aims to design bio-based polyester as a viscosity modifier for lubricant properties. Bio-based polyricinoleate (PRic) and its saturated homologous polyhydroxystearate (PHS) have been synthesized from fatty acid methyl esters. The polycondensation performed in bulk in a one-step reaction without any purification leads to two series of polyesters within a large range of molecular weights, with Mw between 3 and 130 kg·mol–1. Their thermal properties were investigated. Good thermal stability was observed with degradation temperatures above 300 °C. As expected, PRic appeared to be amorphous with a particularly low glass-transition temperature, while PHS is semicrystalline. A rheological study determined that polyricinoleate entangled when its molecular weight was above 25 kg·mol–1. These two bio-based and biodegradable polymers were then evaluated as viscosity modifiers in both organic and mineral oils. PHS with high molecular weights appeared to be an excellent thickener as well as a good viscosity index improver with a viscosity index (VI) increase above +50 in organic lubricant oil and +64 in mineral oil.
- Published
- 2021
33. SERS characterization of aggregated and isolated bacteria deposited on silver-based substrates
- Author
-
Lea Rosselle, Eric Larquet, Anne Chantal Gouget-Laemmel, Simion Astilean, Cristina-Cassiana Andrei, Anne Moraillon, Sabine Szunerits, Monica Potara, François Ozanam, Endre Jakab, Nadia Skandrani, Rabah Boukherroub, Julie Bouckaert, Laboratoire de physique de la matière condensée, CNRS, École polytechnique,IP Paris, Palaiseau, France, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), NanoBioInterfaces - IEMN (NBI - IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), European Project: 690836,H2020,H2020-MSCA-RISE-2015,PANG(2016), Laboratoire de Physique de la Matière Condensée (LPMC), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université de Lille, CNRS, Laboratoire de physique de la matière condensée [LPMC], Babes-Bolyai University [Cluj-Napoca] [UBB], Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN], and Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520
- Subjects
Surface-enhanced Raman scattering (SERS) ,Silver nanostructures ,Escherichia coli ,Staphylococcus aureus ,Aggregated and single bacteria ,Principal component analysis (PCA) ,Silver ,Surface Properties ,02 engineering and technology ,Spectrum Analysis, Raman ,medicine.disease_cause ,01 natural sciences ,Biochemistry ,Pilus ,Analytical Chemistry ,Cell wall ,symbols.namesake ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,medicine ,Humans ,Molecule ,Escherichia coli Infections ,biology ,Chemistry ,010401 analytical chemistry ,Substrate (chemistry) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Staphylococcal Infections ,021001 nanoscience & nanotechnology ,biology.organism_classification ,0104 chemical sciences ,Biophysics ,symbols ,0210 nano-technology ,Raman spectroscopy ,Bacteria ,Raman scattering - Abstract
International audience; Surface-enhanced Raman scattering (SERS), based on the enhancement of the Raman signal of molecules positioned within a few nanometres from a structured metal surface, is ideally suited to provide bacterial-specific molecular fingerprints which can be used for analytical purposes. However, for some complex structures such as bacteria, the generation of reproducible SERS spectra is still a challenging task. Among the various factors influencing the SERS variability (such as the nature of SERS-active substrate, Raman parameters and bacterial specificity), we demonstrate in this study that the environment of Gram-positive and Gram-negative bacteria deposited on ultra-thin silver films also impacts the origin of the SERS spectra. In the case of densely packed bacteria, the obtained SERS signatures were either characteristic of the secretion of adenosine triphosphate for Staphylococcus aureus (S. aureus) or the cell wall and the pili/flagella for Escherichia coli (E. coli), allowing for an easy discrimination between the various strains. In the case of isolated bacteria, SERS mapping together with principal component analysis revealed some variabilities of the spectra as a function of the bacteria environment and the bactericidal effect of the silver. However, the variability does not preclude the SERS signatures of various E. coli strains to be discriminated.
- Published
- 2021
34. Metal–organic framework/graphene oxide composites for CO2 capture by microwave swing adsorption
- Author
-
Christian Serre, Gilles Patriarche, Nicolas Heymans, Damien Aureau, Alexandros Ploumistos, Mégane Muschi, Rudolf Emmerich, Sabine Devautour-Vinot, Saad Sene, Guy De Weireld, Nathalie Steunou, Amine Geneste, Institut des Matériaux Poreux de Paris (IMAP ), Département de Chimie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Institut Lavoisier de Versailles (ILV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Service de Thermodynamique et Physique Mathématique - Faculté Polytechnique de Mons, Université de Mons-Hainaut, Fraunhofer Institute for Chemical Technology (Fraunhofer ICT), Fraunhofer (Fraunhofer-Gesellschaft), and Université Paris-Saclay
- Subjects
Materials science ,Renewable Energy, Sustainability and the Environment ,Graphene ,Composite number ,Oxide ,02 engineering and technology ,General Chemistry ,Microporous material ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,0104 chemical sciences ,law.invention ,chemistry.chemical_compound ,Adsorption ,chemistry ,law ,Desorption ,[CHIM]Chemical Sciences ,General Materials Science ,Metal-organic framework ,Composite material ,0210 nano-technology ,Microwave - Abstract
Metal–organic frameworks (MOFs)/graphene oxide (GO) composites are of growing interest due to their properties which can exceed those of the pure components, including post-combustion CO2 capture. Series of composites suitable for CO2 capture under flue gas conditions based on the microporous water stable MIL-91(Ti) have been prepared with different GO contents, following two routes, in situ and post-synthetic. It was observed that the 5 wt% GO in situ composite exhibits a semi-conducting behavior, while the post-synthetic materials are insulating, even with high (20 wt%) GO content. As a consequence, this composite absorbs microwave radiation more efficiently compared to the pure MOF and post-synthetic materials. Finally, we report that CO2 desorption is much faster under microwave irradiation compared to direct electric heating on MOF/GO in situ materials, paving the way for future energy-saving microwave swing adsorption processes.
- Published
- 2021
35. Control of the single atom/nanoparticle ratio in Pd/C catalysts to optimize the cooperative hydrogenation of alkenes
- Author
-
Camila Rivera‐Cárcamo, Alain Favre-Réguillon, C. de Bellefon, Iann C. Gerber, Boris Guicheret, Régis Philippe, J. Audevard, I. del Rosal, Bruno F. Machado, R. Castro Contreras, Laurent Vanoye, Philippe Serp, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC), Laboratoire de Génie des Procédés Catalytiques (LGPC), École Supérieure Chimie Physique Électronique de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Conservatoire National des Arts et Métiers [CNAM] (CNAM), Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM) Departamento de Tecnologia Quimica e Biologica Escola Superior de Tecnologia e Gestao (LSRE-LCM), Instituto Politecnico de Braganca, Fundação para a Ciência e a Tecnologia, CONICYT, Région Auvergne-Rhône-Alpes (contract number 15 021131 01 – CNR006), ANR-19-CE07-0030,COMET,Catalyse Coopérative Entre Atomes Et Nanoparticules Métalliques(2019), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS), and HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)
- Subjects
chemistry.chemical_classification ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Chemistry ,Alkene ,Inorganic chemistry ,Nanoparticle ,chemistry.chemical_element ,[CHIM.CATA]Chemical Sciences/Catalysis ,02 engineering and technology ,Orders of magnitude (numbers) ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Oxygen ,Catalysis ,0104 chemical sciences ,Hydrogen spillover ,0210 nano-technology ,Dispersion (chemistry) ,Isomerization - Abstract
International audience; We recently reported (R. Castro Contreras, B. Guicheret, B. F. Machado, C. Rivera-Cárcamo, M. A. Curiel Alvarez, B. Valdez Salas, M. Ruttert, T. Placke, A. Favre Réguillon, L. Vanoye, C. de Bellefon, R. Philippe and P. Serp, J. Catal., 2019, 372, 226–244) that a structure/activity correlation exists in Pd/C catalysts for myrcene hydrogenation, which integrates the Pd dispersion, and the surface concentration of oxygen groups and defects of the support. Here, through a combined experimental–theoretical study, we provide an explanation of the influence of these three structural characteristics of Pd/C catalysts for alkene hydrogenation. Highly dispersed Pd nanoparticles (PdNP) are necessary to activate dihydrogen. A high concentration of surface defects on the support is necessary to stabilize Pd single atoms (PdSA), which coexist with PdNP on Pd/C catalysts. A high concentration of oxygenated surface groups is also necessary on the support to allow hydrogen spillover. We demonstrate that such a combination allows cooperative catalysis to operate between PdNP and PdSA that involves the formation of PdSA–H species, which are much more active than PdNP–H for alkene hydrogenation but also isomerization. Importantly, we also report an efficient method to control the ratio between PdSA and PdNP in Pd/C catalysts of similar loadings and show that the control of this ratio allows the development of a new generation of stable and highly active catalysts integrating the ultra-rational use of precious metals in short supply. Indeed, for myrcene hydrogenation, activity variations of several orders of magnitude were measured as a function of the value of this ratio.
- Published
- 2021
36. Acoustic Tamm states in slender tubes
- Author
-
Madiha Amrani, Soufyane Khattou, E. H. El Boudouti, A. Mouadili, Bahram Djafari-Rouhani, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Physique - IEMN (PHYSIQUE - IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Centre National pour la Recherche Scientifique et Technique, CNRST, Hammouti B.Eddaoudi M.Touzani R., Université catholique de Lille (UCL)-Université catholique de Lille (UCL), and Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
- Subjects
Surface (mathematics) ,Physics ,Comb-like structure ,02 engineering and technology ,Acoustic wave ,Type (model theory) ,021001 nanoscience & nanotechnology ,01 natural sciences ,Molecular physics ,Crystal ,Maxima and minima ,[SPI]Engineering Sciences [physics] ,Transmission (telecommunications) ,Band gap ,0103 physical sciences ,Transmission ,Waveguide (acoustics) ,Tube (container) ,010306 general physics ,0210 nano-technology ,Acoustic Tamm states ,Surface modes - Abstract
International audience; We present an analytical and numerical study of the possibility of existence of surface localized modes, the so-called Tamm states, in a one-dimensional (1D) comb-like phononic crystal (PnC). The structure is made out of periodic array of stubs of lengths d2grafted along a waveguide and separated from each other by a tube of length d1. We show the existence of surface modes for the semi-infinite structure. In particular, when one considers two complementary semi-infinite systems obtained by cutting the infinite one into two parts, we obtain one surface mode per gap induced by the surface of the two complementary systems. Furthermore, we demonstrate that these surface modes can be detected from the maxima and minima of the transmission spectrum, when the finite structure is grafted vertically along a homogeneous acoustic waveguide. That means that one can observe experimentally this type of modes for acoustic waves in slender tubes. These results may find many practical applications in noise control and highly sensitive PnC sensors. © 2021 Elsevier Ltd. All rights reserved.
- Published
- 2021
37. Functional nanostructures by NiCCo-PISA of helical poly(aryl isocyanide) copolymers
- Author
-
Andrew P. Dove, Sètuhn Jimaja, Yujie Xie, Rachel K. O'Reilly, Jeffrey C. Foster, Daniel Taton, Team 1 LCPO : Polymerization Catalyses & Engineering, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), University of Warwick [Coventry], School of Chemistry [Birmingham], and University of Birmingham [Birmingham]
- Subjects
Circular dichroism ,Materials science ,Polymers and Plastics ,Aryl ,Isocyanide ,Organic Chemistry ,Bioengineering ,Pentafluorophenyl esters ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,Micelle ,0104 chemical sciences ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Amphiphile ,Polymer chemistry ,Copolymer ,0210 nano-technology ,Maleimide - Abstract
International audience; Herein, we present a straightforward and versatile methodology to achieve functional polymeric nano-objects that contain helical cores. Nickel-catalysed coordination polymerisation-induced self-assembly (NiCCo-PISA) of helical poly(aryl isocyanide) amphiphilic diblock copolymers was conducted, affording micelles containing controllable quantities of activated ester groups (i.e. pentafluorophenyl esters) in the core that were subsequently modified using post-polymerisation modification (PPM) with amine nucleophiles. Three amines bearing different functionalities (alcohol, trifluoro and a maleimide dye) were successfully introduced into the nano-object cores as verified via NMR and FT-IR spectroscopy, while the retention of helicity within the resulting diblock copolymers was confirmed by circular dichroism (CD) spectroscopy. Changes in nanostructure morphology following modification were monitored by dynamic light-scattering (DLS), confirming the disassembly of the nano-objects when the core hydrophilicity was increased through the introduction of polar functionalities. These readily-synthesised and modified nanostructures containing helical cores are valuable scaffolds for use in applications such as circularly polarised luminescence, enantioselective chemistry or chiral separation.
- Published
- 2021
38. Influence of the temperature on the opto-acoustophoretic effect
- Author
-
Gabriel Dumy, Mauricio Hoyos, Jean-Luc Aider, Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Physics ,Acoustics and Ultrasonics ,Field (physics) ,Optical wavelength ,Condensed matter physics ,02 engineering and technology ,Trapping ,021001 nanoscience & nanotechnology ,01 natural sciences ,Instability ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,Fluid density ,Arts and Humanities (miscellaneous) ,Drag ,0103 physical sciences ,Ultrasonic sensor ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,0210 nano-technology ,010301 acoustics ,ComputingMilieux_MISCELLANEOUS ,Excitation - Abstract
Opto-acoustophoretic mobility has been demonstrated recently for fluorescent and colored particles acoustically levitated in a stationary ultrasonic field when illuminated with the appropriate optical wavelength [Dumy, Hoyos, and Aider, J. Acoust. Soc. Am. 146, 4557-4568 (2019); Zhou, Gao, Yang, Li, Shao, Zhang, Li, and Li, Adv. Sci. 5, 1800122 (2018)]. It is a repeatable phenomenon, needing both acoustic trapping and specific optic excitation to occur. However, the physical origin of the phenomenon is still debated. In this study, we provide more insights into the probable origin of this phenomenon by confronting numerical simulations with temperature controlled experiments. The phenomenon properties are well reproduced by our model, relying on a thermofluidic instability, hinting at the potential thermally induced fluid density gradient as a drag source for the observed ejection of particles. Thermostated experiments exhibit a surprising threshold above which the phenomenon is not observed anymore no matter how large the optic or acoustic energies used. This exciting observation differs from the initial interpretation of the phenomenon, altering its potential application without removing its interest because it suggests the possible contactless generation of customized flows by acoustically trapped particles.
- Published
- 2021
39. Effect of the electron donating group on the excited-state electronic nature and epsilon-near-zero properties of curcuminoid-borondifluoride dyes
- Author
-
Dandan Yao, Loic Mager, Elena Zaborova, Kyu-Ri Choi, Benoît Heinrich, Gabriel Canard, Frédéric Fages, Jean Charles Ribierre, Anthony D'Aléo, Steven Huynh, Dae Hyeon Kim, Yeon Ui Lee, Fabrice Mathevet, Jeong Weon Wu, Virginie Placide, EWHA Womans University (EWHA), Chungbuk National University, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Kyushu University [Fukuoka], D'Aléo, Anthony, Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), and Kyushu University
- Subjects
Epsilon-near-zero ,Materials science ,Curcuminoid ,General Chemical Engineering ,Physics::Optics ,02 engineering and technology ,Electron ,01 natural sciences ,010309 optics ,Physics::Popular Physics ,Condensed Matter::Materials Science ,Organic thin film ,chemistry.chemical_compound ,Condensed Matter::Superconductivity ,[CHIM] Chemical Sciences ,0103 physical sciences ,Molecular film ,[CHIM]Chemical Sciences ,Cyanine ,Thin film ,General Chemistry ,021001 nanoscience & nanotechnology ,Acceptor ,Computer Science::Computers and Society ,Crystallography ,Character (mathematics) ,chemistry ,Excited state ,0210 nano-technology ,Visible spectrum - Abstract
Epsilon-near-zero (ENZ) properties have been reported in organic molecular films. In particular, cyanine and squaraine films have been shown to exhibit ENZ properties in the visible spectral region with a strong 3rd order nonlinear optical response near the ENZ spectral region. Noting both cyanine and squaraine belong to the polymethine family, a series of six curcuminoid borondifluoride (Curc) derivatives were developed to examine whether such a polymethine character is positively correlated with the ENZ property of the organic films. Those Curc derivatives possess a Donor–Acceptor–Donor (D–A–D) architecture with acceptor, AcacBF2, located at the molecular center. The backbone of Curc is designed such that the donor strength can be tuned to transit between charge transfer (CT) and polymethine character. This balance between CT and polymethine character of the Curc series is examined based on the Lippert–Mataga plot. As donor strength in the D–A–D structure increases, CT character is less marked resulting in a more dominant polymethine character. The structural and optical properties of the Curc films with a thickness in the order of 30 nm were examined to correlate the polymethine character with the ENZ response. The results obtained in isotropic Curc thin films demonstrate that an increase of polymethine character associated with a stronger donor strength leads to an appearance/enhancement of the ENZ property in the visible spectrum range from 500 to 670 nm. Overall, this study provides useful guidelines to engineer new organic materials showing ENZ properties in a desired spectral range.
- Published
- 2021
40. Engineering a Robust Flat Band in III–V Semiconductor Heterostructures
- Author
-
Xavier Wallart, Daniel Vanmaekelbergh, Gilles Patriarche, David Troadec, Guillaume Fleury, Bruno Grandidier, Christophe Delerue, Nathali Alexandra Franchina Vergel, Maxime Berthe, Ludovic Desplanque, C. Coinon, Yannick Lambert, Tao Xu, François Vaurette, Davide Sciacca, Dmitri A. Yarekha, L. Christiaan Post, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Debye Institute for Nanomaterials Science, Utrecht University [Utrecht], Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Sino-European School of Technology, University of Shanghai [Shanghai], Physique - IEMN (PHYSIQUE - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Dutch Research Council (NWO Chemistry - Toppunt 'Superficial superstructures'), Natural Science Foundation of Shanghai (19ZR1419500), Renatech Network, PCMP PCP, ANR-16-CE24-0007,Dirac-III-V,Super-réseau d'antipoints de Dirac pour les électrons dans les semiconducteurs III-V(2016), ANR-11-EQPX-0015,Excelsior,Centre expérimental pour l'étude des propriétés des nanodispositifs dans un large spectre du DC au moyen Infra-rouge.(2011), ANR-17-CE09-0021,GERMANENE,Croissance de germanene sur substrats à bande interdite(2017), European Project: FIRST STEP, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Physique-IEMN (PHYSIQUE-IEMN), and Centrale de Micro Nano Fabrication - IEMN (CMNF-IEMN)
- Subjects
Materials science ,tight binding calculations ,quantum well ,flat band ,Scanning tunneling spectroscopy ,band engineering ,Bioengineering ,02 engineering and technology ,Electron ,Lattice constant ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Electronic band structure ,Lithography ,ComputingMilieux_MISCELLANEOUS ,Quantum well ,block copolymer lithography ,business.industry ,Mechanical Engineering ,Heterojunction ,disorder ,General Chemistry ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Two-dimensional lattice ,Quantum dot ,scanning tunneling spectroscopy ,Optoelectronics ,III−V semiconductor ,0210 nano-technology ,business - Abstract
Electron states in semiconductor materials can be modified by quantum confinement. Adding to semiconductor heterostructures the concept of lateral geometry offers the possibility to further tailor the electronic band structure with the creation of unique flat bands. Using block copolymer lithography, we describe the design, fabrication, and characterization of multiorbital bands in a honeycomb In0.53Ga0.47As/InP heterostructure quantum well with a lattice constant of 21 nm. Thanks to an optimized surface quality, scanning tunnelling spectroscopy reveals the existence of a strong resonance localized between the lattice sites, signature of a p-orbital flat band. Together with theoretical computations, the impact of the nanopatterning imperfections on the band structure is examined. We show that the flat band is protected against the lateral and vertical disorder, making this industry-standard system particularly attractive for the study of exotic phases of matter.
- Published
- 2020
41. Effect of High Pressure Spark Plasma Sintering on the Densification of a Nb-Doped TiO2 Nanopowder
- Author
-
Shashank Mishra, Nicholas Blanchard, Gilbert Fantozzi, Sandrine Cottrino, Stéphane Daniele, Sylvie Le Floch, Alexandre Verchère, Thomas Gaudisson, Stéphane Pailhès, Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Matériaux, ingénierie et science [Villeurbanne] (MATEIS), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), (nano)Matériaux pour l'énergie (ENERGIE), Institut Lumière Matière [Villeurbanne] (ILM), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie, Catalyse, Polymères et Procédés, R 5265 (C2P2), Centre National de la Recherche Scientifique (CNRS)-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, and Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Anatase ,Materials science ,Sintering ,Spark plasma sintering ,02 engineering and technology ,lcsh:Chemical technology ,lcsh:Technology ,01 natural sciences ,nanopowder TiO 2 ,Phase (matter) ,0103 physical sciences ,densification rate ,lcsh:TP1-1185 ,grain growth ,Ceramic ,Composite material ,010302 applied physics ,lcsh:T ,General Medicine ,021001 nanoscience & nanotechnology ,Microstructure ,Grain growth ,high-pressure spark plasma sintering ,visual_art ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,visual_art.visual_art_medium ,nanopowder TiO2 ,Crystallite ,0210 nano-technology - Abstract
International audience; Sintering under pressure by means of the spark plasma sintering (SPS) technique is a common route to reduce the sintering temperature and to achieve ceramics with a fine-grained microstructure. In this work, high-density bulk TiO 2 was sintered by high pressure SPS. It is shown that by applying high pressure during the SPS process (76 to 400 MPa), densification and phase transition start at lower temperature and are accelerated. Thus, it is possible to dissociate the two densification steps (anatase then rutile) and the transition phase during the sintering cycle. Regardless of the applied pressure, grain growth occurs during the final stage of the sintering process. However, twinning of the grains induced by the phase transition is enhanced under high pressure resulting in a reduction in the crystallite size.
- Published
- 2020
42. Mechanics and Energetics of Electromembranes
- Author
-
Hadrien Bense, Benoit Roman, Jacco Snoeijer, Bruno Andreotti, Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Mécanique, Matière Molle, Morphogénèse, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Physics of Fluids, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Université de Paris (UP)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Université de Paris (UP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Field (physics) ,Polymers ,Biophysics ,Soft robotics ,FOS: Physical sciences ,02 engineering and technology ,Condensed Matter - Soft Condensed Matter ,Edge (geometry) ,electroactive polymers ,01 natural sciences ,Artificial Intelligence ,Simple (abstract algebra) ,0103 physical sciences ,[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph] ,buckling ,Electrodes ,010302 applied physics ,Physics ,Deformation (mechanics) ,Mechanics ,Robotics ,021001 nanoscience & nanotechnology ,Buckling ,Control and Systems Engineering ,Soft Condensed Matter (cond-mat.soft) ,0210 nano-technology ,Distribution (differential geometry) ,electromembrane ,Voltage - Abstract
The recent discovery of electro-active polymers has shown great promises in the field of soft robotics, and was logically followed by experimental, numerical and theoretical developments. Most of these studies were concerned with systems entirely covered by electrodes. However, there is a growing interest for partially active polymers, in which the electrode covers only one part of the membrane. Indeed, such actuation can trigger buckling instabilities and so represents a route toward the control of 3D shapes. Here, we study theoretically the behaviour of such partially active electro-active polymer. We address two problems: (i) the electrostatic elastica including geometric non-linearities and partially electro-active strip using a variational approach. We propose a new interpretation of the equations of deformation, by drawing analogies with biological growth, in which the effect of the electric voltage is seen as a change in the reference stress-free state. (ii) we explain the nature of the distribution of electrostatic forces on this simple system, which is not trivial. In particular we find that edge effects are playing a major role in this problem., soft robotics, Mary Ann Liebert, Inc., 2020
- Published
- 2020
43. Electronic sputtering of solid N2 by swift ions
- Author
-
J. Duprat, Emmanuel Dartois, J. Rojas, T. Id Barkach, B. Augé, Hermann Rothard, Ph. Boduch, Marin Chabot, Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de recherche sur les Ions, les MAtériaux et la Photonique (CIMAP - UMR 6252), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Caen Normandie (UNICAEN), Normandie Université (NU), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and ANR-18-CE31-0011,COMETOR,Origine de la poussière cométaire(2018)
- Subjects
[PHYS]Physics [physics] ,Nuclear and High Energy Physics ,Materials science ,Infrared ,Solid N2 ,Solid N 2 ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Heavy ions ,Ion ,Sputtering ,0103 physical sciences ,Electronic sputtering ,Stopping power (particle radiation) ,Radiation chemistry ,Irradiation ,Sputtering crater ,Thin film ,Atomic physics ,0210 nano-technology ,Spectroscopy ,010303 astronomy & astrophysics ,Instrumentation ,Order of magnitude - Abstract
Most sputtering yield measurements for solid N 2 are reported for stopping powers lower than 10 − 13 eV cm 2 /molecule. We measured the sputtering yield for solid N 2 at stopping powers, in the electronic regime, above 10 − 12 eV cm 2 /molecule, extending the range of such measurements by more than an order of magnitude, using a 33 MeV 58Ni 9 + swift heavy ions beam. The evolution of the thin N 2 ice films was monitored in-situ by mid-infrared spectroscopy (FTIR) during irradiation. As N 2 is only weakly infrared active, and can be hardly monitored directly via an infrared absorption mode in such experiments, we use the Fabry–Perot interference fringes of the ice film to evaluate, via an optical model, the erosion of the N 2 film as a function of ion fluence. A sputtering model including several sputtering crater shapes is developed and tested against experimental data. We derive the sputtering yield for a semi-infinite N 2 ice film and its dependence with the ice thickness for thin film conditions, monitoring the N 2 ice sputtering depth. We combine the results with previous measurements at lower stopping powers to derive the electronic sputtering of solid N 2 over a large stopping power range.
- Published
- 2020
44. How reproducible are surface areas calculated from the BET equation?
- Author
-
Christian Serre, Peyman Z. Moghadam, Feng P, Rama Oktavian, Lin R, Ting, Telalovic S, Omar M. Yaghi, Mark D. Allendorf, Russell E. Morris, Muhammad Sadiq, Philip L. Llewellyn, Jonathan L. Snider, Stavila, Matthew J. Rosseinsky, Hou B, Pütz A, Daniel W. Siderius, Rowlandson J, Randall Q. Snurr, van der Veen M, Nguyen T, Kaneko K, Linares N, Félix Zamora, Zhou H, Camille Petit, Sebastian T. Emmerling, Aran Lamaire, Cui Y, David G. Madden, Salcedo-Abraira P, Krista S. Walton, Soumya Mukherjee, Karam B. Idrees, Doheny Pw, Timur Islamoglu, Azevedo Dcs, Conchi O. Ania, Bu X, Zang X, Martin Schröder, Vilarrasa-García E, Michael T. Huxley, Ken-ichi Otake, Sanchez E, Rega D, Vanspeybroeck, Georges Mouchaham, Carmen Montoro, Lee Sj, David Danaci, Goncalves Rb, Yamil J. Colón, Patricia Horcajada, David S. Sholl, David Fairen-Jimenez, Shane G. Telfer, Bethany M. Connolly, Christian J. Doonan, Ryan P. Lively, D’Alessandro D, Raffaele Ricco, Paul S. Wheatley, Clowes R, Bettina V. Lotsch, Alexandros P. Katsoulidis, François-Xavier Coudert, Dominic Bara, Garcia-Martinez J, Carlos Martí-Gastaldo, Yavuz C, Chen B, Matthew R. Hill, Ross S. Forgan, Shuhei Furukawa, Ghosha Sk, Johannes W.M. Osterrieth, Jack D. Evans, Jorge A. R. Navarro, Suarez Ja, Zhang B, João Marreiros, Jorge Gascon, Neil R. Champness, Kenvin J, Yang S, Iiyuka T, Nakul Rampal, Daniel Maspoch, falcaro p, Rampersad J, Han X, Jacopo Andreo, Benoit Coasne, Yang H, Angelo K, Stefan Wuttke, Santos Bf, Chenyue Sun, Susumu Kitagawa, Luka Skoric, Moreton Jc, Rob Ameloot, Muñoz N, DeWitt Sja, Uemura T, Sven Rogge, Seda Keskin, Lukas W. Bingel, Raghuram Thyagarajan, Mircea Dincă, Seth M. Cohen, Bunzen H, Kukobat R, Omar K. Farha, Sarah L. Griffin, Chen L, University of St Andrews. EaSTCHEM, University of St Andrews. School of Chemistry, University of St Andrews. Institute of Behavioural and Neural Sciences, Institut des Matériaux Poreux de Paris (IMAP ), Département de Chimie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), University of Cambridge [UK] (CAM), Sandia National Laboratories [Livermore], Sandia National Laboratories - Corporation, Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Université d'Orléans (UO)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Universidade Federal do Ceará = Federal University of Ceará (UFC), Nankai University (NKU), University of Augsburg (UNIA), University of Nottingham, UK (UON), The University of Texas at San Antonio (UTSA), Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), University of California [San Diego] (UC San Diego), University of California (UC), University of Notre Dame [Indiana] (UND), University of Liverpool, Institut de Recherche de Chimie Paris (IRCP), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC), Shanghai Jiaotong University, The University of Sydney, Massachusetts Institute of Technology (MIT), University of Adelaide, Technische Universität Dresden = Dresden University of Technology (TU Dresden), Graz University of Technology [Graz] (TU Graz), Northwestern University [Evanston], University of California [Riverside] (UC Riverside), University of Glasgow, Kyoto University, King Abdullah University of Science and Technology (KAUST), Indian Institute of Science Education and Research Pune (IISER Pune), Monash university, Instituto IMDEA Energy [Madrid], Instituto IMDEA Energía, Shinshu University [Nagano], Koç University, Georgia Institute of Technology [Atlanta], TotalEnergies, Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), Max Planck Institute for Solid State Research, Max-Planck-Gesellschaft, Ludwig-Maximilians-Universität München (LMU), Universitat de València (UV), Universidad de Alicante, Barcelona Institute of Science and Technology (BIST), University of Sheffield [Sheffield], University of Saint Andrews, Universidad de Granada = University of Granada (UGR), Imperial College London, University of Manchester [Manchester], École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), National Institute of Standards and Technology [Gaithersburg] (NIST), Massey University, University of Bristol [Bristol], The University of Tokyo (UTokyo), Delft University of Technology (TU Delft), Universiteit Gent = Ghent University (UGENT), Ikerbasque - Basque Foundation for Science, University of California [Berkeley] (UC Berkeley), Korea Advanced Institute of Science and Technology (KAIST), Universidad Autónoma de Madrid (UAM), Texas A&M University [College Station], Universidad de Alicante. Departamento de Química Inorgánica, Laboratorio de Nanotecnología Molecular (NANOMOL), European Commission, European Research Council, University of Cambridge, Trinity College Cambridge, National Nuclear Security Administration (US), Department of Energy (US), Alexander von Humboldt Foundation, Center for Advancing Electronics Dresden, Science and Engineering Research Board (India), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Research Foundation - Flanders, Engineering and Physical Sciences Research Council (UK), National Research Foundation of Korea, Indonesia Endowment Fund for Education, National Institute of Standards and Technology (US), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université d'Orléans (UO), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ministère de la Culture (MC), Avcı, Seda Keskin (ORCID 0000-0001-5968-0336 & YÖK ID 40548), Osterrieth, J.W.M., Rampersad, J., Madden, D., Rampal, N., Skoric, L., Connolly, B., Allendorf, M.D., Stavila, V., Snider, J.L., Ameloot, R., Marreiros, J., Ania, C., Azevedo, D., Vilarrasa-Garcia, E., Santos, B.F., Bu, X.H., Chang, Z., Bunzen, H., Champness, N.R., Griffin, S.L., Chen, B., Lin, R.B., Coasne, B., Cohen, S., Moreton, J.C., Colón, Y.J., Chen, L., Clowes, R., Coudert, F.X., Cui, Y., Hou, B., D'Alessandro, D.M., Doheny, P.W., Dinc?, M., Sun, C., Doonan, C., Huxley, M.T., Evans, J.D., Falcaro, P., Ricco, R., Farha, O., Idrees, K.B., Islamoglu, T., Feng, P., Yang, H., Forgan, R.S., Bara, D., Furukawa, S., Sanchez, E., Gascon, J., Telalovi?, S., Ghosh, S.K., Mukherjee, S., Hill, M.R., Sadiq, M.M., Horcajada, P., Salcedo-Abraira, P., Kaneko, K., Kukobat, R., Kenvin, J., Kitagawa, S., Otake, K.I., Lively, R.P., DeWitt, S.J.A., Llewellyn, P., Lotsch, B.V., Emmerling, S.T., Pütz, A.M., Martí-Gastaldo, C., Padial, N.M., García-Martínez, J., Linares, N., Maspoch, D., Suárez Del Pino, J.A., Moghadam, P., Oktavian, R., Morris, R.E., Wheatley, P.S., Navarro, J., Petit, C., Danacı, D., Rosseinsky, M.J., Katsoulidis, A.P., Schröder, M., Han, X., Yan, S., Serre, C., Mouchaham, G., Sholl, D.S., Thyagarajan, R., Siderius, D., Snurr, R.Q., Goncalves, R.B., Telfer, S., Lee, S.J., Ting, V.P., Rowlandson, J.L., Uemura T, Iiyuka, T., van derVeen, Monique A., Rega, Davide, Van Speybroeck, Veronique, Rogge, Sven M. J., Lamaire, Aran, Walton, Krista S., Bingel, Lukas W., Wuttke, Stefan, Andreo, Jacopo, Yaghi, Omar, Zhang, Bing, Yavuz, Cafer T., Nguyen, Thien S., Zamora, Felix, Montoro, Carmen, Zhou, Hongcai, Kirchon, Angelo, Fairen-Jimenez, David, College of Engineering, Department of Chemical and Biological Engineering, UAM. Departamento de Química Inorgánica, Fairen-Jimenez, David [0000-0002-5013-1194], and Apollo - University of Cambridge Repository
- Subjects
Surface (mathematics) ,Technology ,Chemistry, Multidisciplinary ,Surface area ,02 engineering and technology ,01 natural sciences ,GAS-STORAGE ,Surface Area Analysis ,General Materials Science ,Porous materials ,QD ,BET theory ,Chemistry, Physical ,Nanoporous ,Physics ,1. No poverty ,Química ,[CHIM.MATE]Chemical Sciences/Material chemistry ,3rd-DAS ,Reproducibilities ,021001 nanoscience & nanotechnology ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Chemistry ,Physics, Condensed Matter ,Mechanics of Materials ,Physical Sciences ,Science & Technology - Other Topics ,0210 nano-technology ,Porosity ,Materials Science ,APPLICABILITY ,Materials Science, Multidisciplinary ,Nanotechnology ,010402 general chemistry ,Physics, Applied ,METAL-ORGANIC FRAMEWORKS ,Adsorption ,Porosimetry ,[CHIM]Chemical Sciences ,ddc:530 ,Nanoscience & Nanotechnology ,MCC ,Química Inorgánica ,Science & Technology ,Mechanical Engineering ,Science and technology ,Reproducibility of Results ,QD Chemistry ,0104 chemical sciences ,Physics and Astronomy ,Brunauer Emmett Tellers - Abstract
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (NanoMOFdeli), ERC-2016-COG 726380, Innovate UK (104384) and EPSRC IAA (IAA/RG85685). N.R. acknowledges the support of the Cambridge International Scholarship and the TrinityHenry Barlow Scholarship (Honorary). O.K.F. and R.Q.S. acknowledge funding from the U.S. Department of Energy (DE-FG02-08ER15967). R.S.F. and D.B. acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (SCoTMOF), ERC-2015-StG 677289. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. The authors gratefully acknowledge funding from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell Technologies Office, through the Hydrogen Storage Materials Advanced Research Consortium (HyMARC). This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. J.D.E. acknowledges the support of the Alexander von Humboldt Foundation and the Center for Information Services and High Performance Computing (ZIH) at TU Dresden. S.K.G. and S.M. acknowledge SERB (Project No. CRG/2019/000906), India for financial support. K.K. and R.K. acknowledge Active Co. Research Grant for funding. S.K. acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (COSMOS), ERC-2017-StG 756489. N.L. and J.G.M acknowledge funding from the European Commission through the H2020-MSCA-RISE-2019 program (ZEOBIOCHEM -872102) and the Spanish MICINN and AEI/FEDER (RTI2018-099504-B-C21). N.L. thanks the University of Alicante for funding (UATALENTO17-05). ICN2 is supported by the Severo Ochoa program from the Spanish MINECO (Grant No. SEV-2017-0706) S.M.J.R. and A.L. wish to thank the Fund for Scientific Research Flanders (FWO), under grant nos. 12T3519N and 11D2220N. L.S. was supported by the EPSRC Cambridge NanoDTC EP/L015978/1. C.T.Y. and T.S.N. acknowledges funds from the National Research Foundation of Korea, NRF-2017M3A7B4042140 and NRF-2017M3A7B4042235. P.F. and H. Y. acknowledge US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Award No. DE-SC0010596 (P.F.). R.O. would like to acknowledge funding support during his Ph.D. study from Indonesian Endowment Fund for Education-LPDP with the contract No. 202002220216006. Daniel Siderius: Official contribution of the National Institute of Standards and Technology (NIST), not subject to copyright in the United States of America. Daniel Siderius: Certain commercially available items may be identified in this paper. This identification does not imply recommendation by NIST, nor does it imply that it is the best available for the purposes described. B.V.L, S.T.E and A.M.P acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Program (Grant agreement no. 639233, COFLeaf)., Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer–Emmett–Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of microand mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This roundrobin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called “BET surface identification” (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible., European Research Council (ERC) ERC-2016-COG 726380 ERC-2015-StG 677289 ERC-2017-StG 756489 639233, UK Research & Innovation (UKRI) Innovate UK 104384 UK Research & Innovation (UKRI), Engineering & Physical Sciences Research Council (EPSRC) IAA/RG85685, Cambridge International Scholarship TrinityHenry Barlow Scholarship, United States Department of Energy (DOE) DE-FG02-08ER15967, National Nuclear Security Administration DE-NA-0003525, United States Department of Energy (DOE), Alexander von Humboldt Foundation, Center for Information Services and High Performance Computing (ZIH) at TU Dresden, Department of Science & Technology (India), Science Engineering Research Board (SERB), India CRG/2019/000906, Active Co. Research Grant, European Commission through the H2020-MSCA-RISE-2019 program ZEOBIOCHEM -872102, Spanish MICINN and AEI/FEDER RTI2018-099504-B-C21, University of Alicante UATALENTO17-05, Spanish Government SEV-2017-0706 FWO 12T3519N 11D2220N, UK Research & Innovation (UKRI), Engineering & Physical Sciences Research Council (EPSRC) EP/L015978/1, National Research Foundation of Korea NRF-2017M3A7B4042140 NRF-2017M3A7B4042235, United States Department of Energy (DOE) DE-SC0010596, Indonesian Endowment Fund for Education-LPDP 202002220216006
- Published
- 2022
45. Growth Mechanism of Polymer Membranes Obtained by H-Bonding Across Immiscible Liquid Interfaces
- Author
-
Thomas Salez, Mathilde Reyssat, Nadège Pantoustier, J Dupré de Baubigny, Cécile Monteux, Patrick Perrin, Sciences et Ingénierie de la Matière Molle (UMR 7615) (SIMM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Ondes et Matière d'Aquitaine (LOMA), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Gulliver (UMR 7083), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Sciences et Ingénierie de la Matière Molle (SIMM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Gulliver, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
- Subjects
Materials science ,Polymers and Plastics ,Polymers ,Interfaces ,Synthetic membrane ,FOS: Physical sciences ,Capsules ,02 engineering and technology ,Condensed Matter - Soft Condensed Matter ,010402 general chemistry ,01 natural sciences ,Inorganic Chemistry ,Diffusion ,[CHIM.GENI]Chemical Sciences/Chemical engineering ,Materials Chemistry ,Diffusion (business) ,[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] ,chemistry.chemical_classification ,Condensed Matter - Materials Science ,Molar mass ,Membranes ,Hydrogen bond ,Organic Chemistry ,Rational design ,Materials Science (cond-mat.mtrl-sci) ,Polymer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Membrane ,[CHIM.POLY]Chemical Sciences/Polymers ,Diffusion process ,Chemical engineering ,chemistry ,Transport properties ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Soft Condensed Matter (cond-mat.soft) ,0210 nano-technology ,Thickness ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] ,Porosity - Abstract
Complexation of polymers at liquid interfaces is an emerging technique to produce all-liquid printable and self-healing devices and membranes. It is crucial to control the assembly process, but the mechanisms at play remain unclear. Using two different reflectometric methods, we investigate the spontaneous growth of H-bonded PPO-PMAA (polypropylene oxide-polymetacrylic acid) membranes at a flat liquid-liquid interface. We find that the membrane thickness h grows with time t as h similar to t(1/2), which is reminiscent of a diffusion-limited process. However, counterintuitively, we observe that this process is faster as the PPO molar mass increases. We are able to rationalize these results with a model which considers the diffusion of the PPO chains within the growing membrane. The architecture of the latter is described as a gel-like porous network, with a pore size much smaller than the radius of the diffusing PPO chains, thus inducing entropic barriers that hinder the diffusion process. From the comparison between the experimental data and the result of the model, we extract some key piece of information about the microscopic structure of the membrane. This study opens the route toward the rational design of self-assembled membranes and capsules with optimal properties.
- Published
- 2022
46. Electrocaloric Enhancement Induced by Cocrystallization of Vinylidene Difluoride-Based Polymer Blends
- Author
-
Georges Hadziioannou, Florian Le Goupil, Naser Pouriamanesh, Francesco Coin, Guillaume Fleury, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Polymers and Plastics ,Organic Chemistry ,Difluoride ,Refrigeration ,microstructure tuning ,02 engineering and technology ,ferroelectric polymer ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Thermal control ,0104 chemical sciences ,electrocaloric effect ,Inorganic Chemistry ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,Materials Chemistry ,Polymer blend ,0210 nano-technology - Abstract
International audience; Active thermal control will be a major challenge of the twenty-first century, which has emphasized the need for the development of energy-efficient refrigeration techniques such as electrocaloric (EC) cooling. Highly polar semi-crystalline VDF-based polymers are promising organic EC materials, however, their cooling performance, which is highly structurally-dependent, needs further improvement to become competitive. Here, we report a simple method to increase the crystalline coherence of P(VDF-ter-TrFE-ter-CFE) ter-polymer in the plane including the polar direction. This is achieved by blending P(VDF-ter-TrFE-ter-CFE) with minute amounts of P(VDF-co-TrFE) co-polymer with similar VDF/TrFE unit content. This similarity allows for a cocrystallization of the co-polymer chains in the ter-polymer crystalline lamellae, preferentially extending the lateral coherence without lamellar thickening, as validated with a wide range of structural characterisation. This results in a significant dielectric and electrocaloric enhancement, with a remarkable electrocaloric effect, ΔTEC = 5.2 K, confirmed by direct measurements for a moderate electric field of 90 MV∙m-1 in a blend with 1 wt% of co-polymer.
- Published
- 2022
47. Modelling study of emulsion latex coagulation processes in coagulators
- Author
-
Nida Sheibat-Othman, Dang Cheng, Timothy F. L. McKenna, Laboratoire de Chimie, Catalyse, Polymères et Procédés, R 5265 (C2P2), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'automatique et de génie des procédés (LAGEP), Université de Lyon-Université de Lyon-École Supérieure Chimie Physique Électronique de Lyon-Centre National de la Recherche Scientifique (CNRS), Fudan University [Shanghai], Laboratoire d'automatique, de génie des procédés et de génie pharmaceutique (LAGEPP), and Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,emulsion latex coagulation ,General Chemical Engineering ,computational fluid dynamics ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,6. Clean water ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,Particle-size distribution ,Emulsion ,mixing ,Coagulation (water treatment) ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,particle size distribution ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Mixing (physics) - Abstract
International audience; This paper presents a numerical study of emulsion latex coagulation processes in continuous coagulators based on the full computational fluid dynamics approach. The RANS approach together with the k-ε turbulence model was used to describe the detailed flow field in the coagulators. The coagulant mixing process was modelled by the convection-diffusion equation and the emulsion latex coagulation process was formulated by the population balance equation of the particle size with a coagulation kernel including a perikinetic and orthokinetic combined mechanism. The flow and coagulation models were independently validated by means of comparing simulated results to the relevant experimental data from the literature. A series of simulations were carried out to study the effects of coagulator bottom shape, salt solution feeding location, residence time and agitation speed, as well as the influence of four typical scale-up criteria on the latex particle coagulation process. The presented results would be helpful for the relevant process design, development and scale-up of continuous latex coagulators.
- Published
- 2020
48. The influence of codoping on optical properties and glass connectivity of silica fiber preforms
- Author
-
Wilfried Blanc, Maria Rita Cicconi, Dominique de Ligny, Daniel R. Neuville, Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Institut de Physique de Nice (INPHYNI), Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- Subjects
Materials science ,Optical fiber ,Photoluminescence ,Silica fiber ,Physics::Optics ,02 engineering and technology ,01 natural sciences ,law.invention ,Condensed Matter::Materials Science ,symbols.namesake ,law ,0103 physical sciences ,Materials Chemistry ,Raman ,010302 applied physics ,business.industry ,glass structure ,Process Chemistry and Technology ,Doping ,021001 nanoscience & nanotechnology ,Cladding (fiber optics) ,REE ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Amorphous solid ,Photodarkening ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Ceramics and Composites ,symbols ,Optoelectronics ,cations structural role ,0210 nano-technology ,Raman spectroscopy ,business - Abstract
International audience; Rare Earth Elements-doped glasses have applications in many fields, and for example, Al and Ce codoping in silica optical fibers is usually done to attenuate the optical degradation (photodarkening) of, e.g. Yb and Tm doped silica optical fibers. To shed some light on the effect of codoping on the optical properties and the glass structure of SiO 2 fibers, we investigated a SiO 2 fiber preform having a gradual increase of the CeO 2 + Al 2 O 3 content from 1.5 to 6.3 mol% and a CeO 2 /Al 2 O 3 molar ratio varying from 0.04 to 1.4. Raman and photo-luminescence spectroscopies have been used to evaluate changes in the short-and medium-range order both in the cladding and in the core portions, and the evolution of the glass optical properties, respectively. The variations of the excitation and emission have been linked to modifications in the vibration bands of the Raman spectra, and in turn, the relationship between optical properties and glass connectivity has been carefully considered. Our results show that there is a strong positive linear relationship between the increase of the Raman bands in the high-frequency range and the red-shift of the excitation maxima. Therefore, the change of < Ce-O > distances and bond covalency character influences, in the same way, both the photoluminescence behavior of the core and the connectivity of the amorphous network.
- Published
- 2020
49. Impact of the Oil Matrix on Anionic and Nonionic Surfactant Separation Using Ultra-High-Performance Liquid Chromatography Hyphenated to High-Resolution Mass Spectrometry
- Author
-
Matthieu Loriau, Didier Thiébaut, Alizée Dufour, Leticia Ligiero, Jérôme Vial, Laboratoire Sciences Analytiques, Bioanalytiques, et Miniaturisation (LSABM), Chimie-Biologie-Innovation (UMR 8231) (CBI), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), and Pôle d'Etude et de Recherche de Lacq [Total] (PERL)
- Subjects
Petroleum industry ,Materials science ,Chromatography ,Surfactants ,General Chemical Engineering ,Energy Engineering and Power Technology ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Mass spectrometry ,Crude oil ,Mixed-mode chromatography ,Matrix (chemical analysis) ,Fuel Technology ,High-Resolution Mass Spectrometry ,020401 chemical engineering ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Nonionic surfactant ,0204 chemical engineering ,Ultra high performance ,0210 nano-technology - Abstract
International audience; For the first time, to our knowledge, anionic and nonionic surfactants were analyzed in an oil matrix by ultra-high-performance liquid chromatography hyphenated to high-resolution mass spectrometry (UHPLC-HRMS). The feasibility of this analysis was studied using synthetic mixtures of surfactants prepared in water (quality controls), binary THF/toluene 50/50 v/v (surfactant + THF/toluene), and binary THF/toluene containing 1 and 10% crude oil (Crude1% and Crude10%). These compositions were chosen in order to be as close as possible to petroleum related samples to be investigated in the future. Analyses were carried out by UHPLC methods using both reverse phase and anion-exchange mechanisms with a mixed mode column. Despite the complexity of the oil matrix and the presence of organic solvents used for dilution, the retention times of the surfactants were not affected whatever the concentration of crude oil present in the sample. Nevertheless, a significant matrix effect caused a loss of signal when the concentration of oil reached 10% in mass. For the analysis of samples with this crude oil concentration range, it would be advisable to dilute the sample.
- Published
- 2020
50. Intraconfigurational Transition due to Surface-Induced Symmetry Breaking in Noncovalently Bonded Molecules
- Author
-
Cyrille Barreteau, Robert Sporken, Rishav Harsh, Yann Girard, Vincent Repain, Alexander Smogunov, Jérôme Lagoute, Cyril Chacon, Frédéric Joucken, Mads Brandbyge, Amandine Bellec, Fei Gao, Sylvie Rousset, Mehdi Bouatou, Yannick J. Dappe, Laboratoire Matériaux et Phénomènes Quantiques (MPQ (UMR_7162)), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Physique de la Matière et du Rayonnement [Namur] (PMR), Université de Namur [Namur] (UNamur), Center for Nanostructured Graphene, Danmarks Tekniske Universitet (DTU), Groupe Modélisation et Théorie (GMT), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
Materials science ,Graphene ,02 engineering and technology ,Weak interaction ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,law.invention ,Atomic orbital ,law ,Chemical physics ,Molecule ,General Materials Science ,Redistribution (chemistry) ,Electron configuration ,Symmetry breaking ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Physics::Chemical Physics ,Physical and Theoretical Chemistry ,0210 nano-technology ,Ground state ,ComputingMilieux_MISCELLANEOUS - Abstract
The interaction of molecules with surfaces plays a crucial role in the electronic and chemical properties of supported molecules and needs a comprehensive description of interfacial effects. Here, we unveil the effect of the substrate on the electronic configuration of iron porphyrin molecules on Au(111) and graphene, and we provide a physical picture of the molecule-surface interaction. We show that the frontier orbitals derive from different electronic states depending on the substrate. The origin of this difference comes from molecule-substrate orbital selective coupling caused by reduced symmetry and interaction with the substrate. The weak interaction on graphene keeps a ground state configuration close to the gas phase, while the stronger interaction on gold stabilizes another electronic solution. Our findings reveal the origin of the energy redistribution of molecular states for noncovalently bonded molecules on surfaces.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.