Back to Search Start Over

Analog programing of conducting-polymer dendritic interconnections and control of their morphology

Authors :
Fabien Alibart
Anna Susloparova
Sébastien Pecqueur
Kamila Janzakova
Mahdi Ghazal
Yannick Coffinier
Ankush Kumar
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
Université catholique de Lille (UCL)-Université catholique de Lille (UCL)
Nanostructures, nanoComponents & Molecules - IEMN (NCM - IEMN)
Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
NanoBioInterfaces - IEMN (NBI - IEMN)
Laboratoire Nanotechnologies et Nanosystèmes [Sherbrooke] (LN2)
Université de Sherbrooke (UdeS)-École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
European Commission: H2020-EU.1.1.ERC project IONOS (# GA 773228-recipient: F.A.).
Renatech Network
European Project: 773228,H2020,ERC-2017-COG,IONOS(2018)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Source :
Nature Communications, Vol 12, Iss 1, Pp 1-11 (2021), Nature Communications, Nature Communications, 2021, 12 (1), ⟨10.1038/s41467-021-27274-9⟩, Nature Communications, Nature Publishing Group, 2021, 12 (1), ⟨10.1038/s41467-021-27274-9⟩
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Although materials and processes are different from biological cells’, brain mimicries led to tremendous achievements in parallel information processing via neuromorphic engineering. Inexistent in electronics, we emulate dendritic morphogenesis by electropolymerization in water, aiming in operando material modification for hardware learning. Systematic study of applied voltage-pulse parameters details on tuning independently morphological aspects of micrometric dendrites’: fractal number, branching degree, asymmetry, density or length. Growths time-lapse image processing shows spatial features to be dynamically dependent, and expand distinctively before and after conductive bridging with two electro-generated dendrites. Circuit-element analysis and impedance spectroscopy confirms their morphological control in temporal windows where growth kinetics is finely perturbed by the input frequency and duty cycle. By the emulation of one’s most preponderant mechanisms for brain’s long-term memory, its implementation in vicinity of sensing arrays, neural probes or biochips shall greatly optimize computational costs and recognition required to classify high-dimensional patterns from complex environments.<br />Despite advances in brain-inspired computing, existing electronics use top-down processes that do not compare with neural connections in the brain. Here, the authors report an electrically-tunable electropolymerization process that emulates and controls neural dendritic morphogenesis.

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....b7e8887bdc2cb3d545318a1a022b5e16