1. CTIS-Net: A Neural Network Architecture for Compressed Learning Based on Computed Tomography Imaging Spectrometers
- Author
-
Carlos Crispim-Junior, Gérald Germain, Clément Douarre, David Rousseau, Laure Tougne, Anthony Gelibert, Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2), Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers (UA), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
Computer science ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Imaging spectrometer ,02 engineering and technology ,Iterative reconstruction ,01 natural sciences ,Convolutional neural network ,Image (mathematics) ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,010309 optics ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Computer vision ,ComputingMilieux_MISCELLANEOUS ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Spectrometer ,business.industry ,Hyperspectral imaging ,Computer Science Applications ,Computational Mathematics ,Signal Processing ,Snapshot (computer storage) ,020201 artificial intelligence & image processing ,Artificial intelligence ,Cube ,business - Abstract
The Computed Tomography Imaging Spectrometer (CTIS) permits a snapshot acquisition of a hyperspectral cube, through the creation of an image of indirect measurements which is then traditionally used for reconstruction of the cube. This reconstruction step is time-consuming and only yields an approximation of the original cube. Following a compressed learning framework, we compare the performance of a classification task carried out on reconstructed cubes on one hand, directly on the raw images on the other. Regarding the latter case, we propose in particular the use of a new Convolutional Neural Network (CNN) architecture called CTIS-Net, whose architecture is tailored to benefit from the specific structure of CTIS images. Results show a sizable increase compared to classification with a standard architecture and compared to a conventional classification on the reconstructed cubes.
- Published
- 2021