Back to Search Start Over

Discrete parabolas and circles on 2D cellular automata

Authors :
Laure Tougne
Marianne Delorme
Jacques Mazoyer
Laboratoire de l'Informatique du Parallélisme (LIP)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École normale supérieure - Lyon (ENS Lyon)
Source :
Theoretical Computer Science, Theoretical Computer Science, 1999, 218 (2), ⟨10.1016/S0304-3975(98)00330-2⟩, Theoretical Computer Science, Elsevier, 1999, 218 (2), ⟨10.1016/S0304-3975(98)00330-2⟩
Publication Year :
1999
Publisher :
HAL CCSD, 1999.

Abstract

andpossiblythehexagonalnetwork. Wecallcell each pair {vertex,automaton A}.Such a system can be considered as a dynamical one. At one time t,the global state of the system is given by an application Γ −→ S,whichassigns to each cell a state of A.And,startingfromaninitialconfiguration,the whole system synchronously evolves, at discrete times, from one config-uration to the next one. This behavior is formalized through asequenceofconfigurations (Γ

Details

Language :
English
ISSN :
18792294 and 03043975
Database :
OpenAIRE
Journal :
Theoretical Computer Science, Theoretical Computer Science, 1999, 218 (2), ⟨10.1016/S0304-3975(98)00330-2⟩, Theoretical Computer Science, Elsevier, 1999, 218 (2), ⟨10.1016/S0304-3975(98)00330-2⟩
Accession number :
edsair.doi.dedup.....c5bc2b7afe6c751c5a48320192f31d56