1. Exceptional Model Mining meets Multi-objective Optimization
- Author
-
Jean-François Boulicaut, Rémy Cazabet, Alexandre Millot, Data Mining and Machine Learning (DM2L), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Université Lumière - Lyon 2 (UL2)
- Subjects
Computer science ,media_common.quotation_subject ,02 engineering and technology ,computer.software_genre ,Class (biology) ,Multi-objective optimization ,Regression ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Exceptional model mining ,020204 information systems ,Hyperparameter optimization ,0202 electrical engineering, electronic engineering, information engineering ,Beam search ,020201 artificial intelligence & image processing ,Relevance (information retrieval) ,Quality (business) ,[INFO]Computer Science [cs] ,Data mining ,computer ,media_common - Abstract
International audience; Exceptional Model Mining (EMM) is a local pattern mining framework that generalizes subgroup discovery. In EMM, we look for subsets of objects-subgroups-whose model deviates significantly from the same model fitted on the overall dataset. Multi-objective Optimization (MOO) is an area of Multiple Criteria Decision Making where two or more functions need to be optimized at the same time and the goal is to find the best compromise between the concurrent objectives. We introduce a new model class for EMM in a MOO setting called Exceptional Pareto Front Mining. We design fitting quality measures that take into account both the distance between models and the relevance of the subgroups. We propose a beam search for top-K EMM whose added-value is studied on both synthetic and real life datasets. Among others, we discuss a use case on hyperparameter optimization in machine learning for both regression and multi-label classification.
- Published
- 2021
- Full Text
- View/download PDF