Back to Search Start Over

Actionable Subgroup Discovery and Urban Farm Optimization

Authors :
Jean-François Boulicaut
Romain Mathonat
Rémy Cazabet
Alexandre Millot
Data Mining and Machine Learning (DM2L)
Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École Centrale de Lyon (ECL)
Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Université Lumière - Lyon 2 (UL2)
Source :
Lecture Notes in Computer Science ISBN: 9783030445836, IDA, International Symposium on Intelligent Data Analysis (IDA), International Symposium on Intelligent Data Analysis (IDA), Apr 2020, Konstanz, Germany. pp.339-351
Publication Year :
2020
Publisher :
Springer International Publishing, 2020.

Abstract

International audience; Designing, selling and/or exploiting connected vertical urban farms is now receiving a lot of attention. In such farms, plants grow in controlled environments according to recipes that specify the different growth stages and instructions concerning many parameters (e.g., temperature , humidity, CO2, light). During the whole process, automated systems collect measures of such parameters and, at the end, we can get some global indicator about the used recipe, e.g., its yield. Looking for innovative ideas to optimize recipes, we investigate the use of a new optimal subgroup discovery method from purely numerical data. It concerns here the computation of subsets of recipes whose labels (e.g., the yield) show an interesting distribution according to a quality measure. When considering optimization, e.g., maximizing the yield, our virtuous circle optimization framework iteratively improves recipes by sampling the discovered optimal subgroup description subspace. We provide our preliminary results about the added-value of this framework thanks to a plant growth simulator that enables inexpensive experiments.

Details

ISBN :
978-3-030-44583-6
ISBNs :
9783030445836
Database :
OpenAIRE
Journal :
Lecture Notes in Computer Science ISBN: 9783030445836, IDA, International Symposium on Intelligent Data Analysis (IDA), International Symposium on Intelligent Data Analysis (IDA), Apr 2020, Konstanz, Germany. pp.339-351
Accession number :
edsair.doi.dedup.....8ea8e5b7accd00732eeb4719ef53f8f7
Full Text :
https://doi.org/10.1007/978-3-030-44584-3_27