1. Multi-scenario interpretations from sparse fault evidence using graph theory and geological rules
- Author
-
Gautier Laurent, Guillaume Caumon, Gabriel Godefroy, François Bonneau, GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure de Géologie (ENSG), Université de Lorraine (UL), Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Métallogénie - UMR7327, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Consortium RING-GOCAD, RING, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC)
- Subjects
[SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics ,010504 meteorology & atmospheric sciences ,media_common.quotation_subject ,Graph theory ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,Ambiguity ,Structural basin ,01 natural sciences ,Structural consistency ,Geophysics ,Simulation algorithm ,Space and Planetary Science ,Geochemistry and Petrology ,Seismic line ,Earth and Planetary Sciences (miscellaneous) ,Graph (abstract data type) ,Uncertainty quantification ,Algorithm ,[SDU.STU.AG]Sciences of the Universe [physics]/Earth Sciences/Applied geology ,0105 earth and related environmental sciences ,media_common - Abstract
Preprint submitted to Journal of Geophysical Research - Solid Earth; International audience; The characterization of geological faults from geological and geophysical data is often subject to uncertainties, owing to data ambiguity and incomplete spatial coverage. We propose a stochastic sampling algorithm which generates fault network scenarios compatible with sparse fault evidence while honoring some geological concepts. This process proves useful for reducing interpretation bias, formalizing interpretation concepts, and assessing first-order structural uncertainties. Each scenario is represented by an undirected association graph, where a fault corresponds to an isolated clique, which associates pieces of fault evidence represented as graph nodes. The simulation algorithm samples this association graph from a possibility graph, whose edges represent the independent association of any two pieces of fault evidence. Each edge carries a likelihood that the endpoints belong to the same fault surface is computed, expressing general and regional geological interpretation concepts. The algorithm is illustrated on several incomplete data sets made of three to six two-dimensional seismic lines extracted from a three-dimensional seismic image located in the Santos Basin, offshore Brazil. In all cases, the simulation method generates a large number of plausible fault networks, even when using restrictive interpretation rules. The case study experimentally confirms that retrieving the reference association is tedious due to the problem combinatorics. Restrictive and consistent rules increase the likelihood to recover the reference interpretation and reduce the diversity of the obtained realizations. We discuss how the proposed method fits in the quest to rigorously (1)~address epistemic uncertainty during structural uncertainty studies and (2)~ quantify subsurface uncertainty while preserving structural consistency.
- Published
- 2021
- Full Text
- View/download PDF