Back to Search Start Over

Topological control for isotropic remeshing of non-manifold surfaces with varying resolution: application to 3D structural models

Authors :
Bruno Levy
Jeanne Pellerin
Guillaume Caumon
Centre de Recherches Pétrographiques et Géochimiques (CRPG)
Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Geometry and Lighting (ALICE)
INRIA Lorraine
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)
Marschallinger
R. and Zolb
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Source :
IAMG 2011-Mathematical Geosciences at the Crossroads of Theory and Practice, IAMG 2011-Mathematical Geosciences at the Crossroads of Theory and Practice, Sep 2011, Salzburg, Austria. pp.678-688, ⟨10.5242/iamg.2011.0158⟩
Publication Year :
2011
Publisher :
HAL CCSD, 2011.

Abstract

International audience; In this paper we propose a method to remesh non-manifold surfaces with triangles as equilateral as possible. We adapt an existing Voronoi based remeshing framework to recover the topology of non-manifold surfaces and their boundaries. The input of the procedure is a non-manifold triangulated surface constituted of several connected components representing geological interfaces (faults, horizons, detachments, etc). Positions of a given number of points are globally optimized to obtain an isotropic sampling of the surface. Then a topological control that enforces the topological ball property adds points to recover non-manifold edges and vertices. The method is demonstrated on a complex 3D fault model and clears the path for generating several models with varying resolution under topological control.

Details

Language :
English
Database :
OpenAIRE
Journal :
IAMG 2011-Mathematical Geosciences at the Crossroads of Theory and Practice, IAMG 2011-Mathematical Geosciences at the Crossroads of Theory and Practice, Sep 2011, Salzburg, Austria. pp.678-688, ⟨10.5242/iamg.2011.0158⟩
Accession number :
edsair.doi.dedup.....d7605a0739d7d5ebb40a256a279f76f2
Full Text :
https://doi.org/10.5242/iamg.2011.0158⟩