1. The beneficial effect of cathodic hydrogen peroxide generation on mitigating chlorinated by-product formation during water treatment by an electro-peroxone process
- Author
-
Weikun Yao, Fu Jing, Yujue Wang, Hongwei Yang, and Gang Yu
- Subjects
Environmental Engineering ,Hypochlorous acid ,0208 environmental biotechnology ,Inorganic chemistry ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,Chloride ,Electrolysis ,Water Purification ,law.invention ,chemistry.chemical_compound ,Ozone ,law ,Chloroacetic acids ,medicine ,Hydrogen peroxide ,Waste Management and Disposal ,Electrolytic process ,0105 earth and related environmental sciences ,Water Science and Technology ,Civil and Structural Engineering ,Ecological Modeling ,Advanced oxidation process ,Hydrogen Peroxide ,Pollution ,020801 environmental engineering ,chemistry ,Water treatment ,Oxidation-Reduction ,Water Pollutants, Chemical ,medicine.drug - Abstract
The formation of chlorinated by-products is a major concern associated with electrochemical water treatment processes. This study investigated the formation of chlorinated by-products during surface water treatment by a newly developed electrochemical advanced oxidation process (EAOP), the electro-peroxone (E-peroxone) process, which couples ozonation with in situ electro-generation of hydrogen peroxide (H2O2) from cathodic oxygen reduction. Due to the enhanced ozone (O3) conversion to hydroxyl radicals (•OH) by electro-generated H2O2, the E-peroxone process considerably accelerated the abatement of ozone-refractory micropollutants such as clofibric acid and chloramphenicol in the selected surface water compared to conventional ozonation. In addition, the cathodically generated H2O2 effectively quenched hypochlorous acid (HOCl) derived from the anodic oxidation of chloride in the surface water. Therefore, the formation of trichloromethane (TCM) and chloroacetic acids (CAAs) from the reactions of HOCl with dissolved organic matter (DOM) was insignificant during the E-peroxone process, and similar levels of TCM and CAAs were generally observed in the conventional ozonation and E-peroxone treated water. In contrast, considerable amounts of HOCl could be generated from the anodic oxidation of chloride and then accumulated in the surface water during conventional electrolysis process, which resulted in significantly higher concentrations of TCM and CAAs in the electrolysis treated water. The results of this study suggest that the E-peroxone process can overcome the major limitation of conventional electrochemical processes and provide an effective and safe EAOP alternative for micropollutant abatement during water treatment.
- Published
- 2019
- Full Text
- View/download PDF