1. Structure Determination of Boron-Based Oxidative Dehydrogenation Heterogeneous Catalysts With Ultrahigh Field 35.2 T 11B Solid-State NMR Spectroscopy
- Author
-
William P. McDermott, Melissa C. Cendejas, Aaron J. Rossini, Rick W. Dorn, Natalie R. Altvater, Ive Hermans, Ivan Hung, Kuizhi Chen, and Zhehong Gan
- Subjects
Materials science ,010405 organic chemistry ,chemistry.chemical_element ,General Chemistry ,Nuclear magnetic resonance spectroscopy ,010402 general chemistry ,01 natural sciences ,Catalysis ,0104 chemical sciences ,NMR spectra database ,Solid-state nuclear magnetic resonance ,chemistry ,Boron oxide ,Physical chemistry ,Dehydrogenation ,Boron ,Spectroscopy - Abstract
Boron-based heterogenous catalysts, such as hexagonal boron nitride (h-BN) as well as supported boron oxides, are highly selective catalysts for the oxidative dehydrogenation (ODH) of light alkanes to olefins. Previous catalytic measurements and molecular characterization of boron-based catalysts by 11B solid-state NMR spectroscopy and other techniques suggests that oxidized/hydrolyzed boron clusters are the catalytically active sites for ODH. However, 11B solid-state NMR spectroscopy often suffers from limited resolution because boron-11 is an I = 3/2 half-integer quadrupolar nucleus. Here, ultra-high magnetic field (B0 = 35.2 T) is used to enhance the resolution of 11B solid-state NMR spectra and unambiguously determine the local structure and connectivity of boron species in h-BN nanotubes used as a ODH catalyst (spent h-BNNT), boron substituted MCM-22 zeolite [B-MWW] and silica supported boron oxide [B/SiO2] before and after use as an ODH catalyst. One-dimensional direct excitation 11B NMR spectra recorded at B0 = 35.2 T are near isotropic in nature, allowing for the easy identification of all boron species. Two-dimensional 1H-11B heteronuclear correlation NMR spectra aid in the identification of boron species with B-OH functionality. Most importantly, 2D 11B dipolar double-quantum single-quantum homonuclear correlation NMR experiments were used to unambiguously probe boron-boron connectivity within all heterogeneous catalysts. These experiments are practically infeasible at lower, more conventional magnetic fields due to a lack of resolution and reduced NMR sensitivity. The detailed molecular structures determined for the amorphous oxidized/hydrolyzed boron layers on these heterogenous catalysts will aid in the future development of next generation ODH catalysts.
- Published
- 2020
- Full Text
- View/download PDF