19 results on '"Incompressible euler equations"'
Search Results
2. Energy Concentrations and Type I Blow-Up for the 3D Euler Equations
- Author
-
Joerg Wolf and Dongho Chae
- Subjects
Physics ,010102 general mathematics ,Mathematical analysis ,Mathematics::Analysis of PDEs ,Statistical and Nonlinear Physics ,01 natural sciences ,Euler equations ,symbols.namesake ,Corollary ,Norm (mathematics) ,0103 physical sciences ,symbols ,Incompressible euler equations ,010307 mathematical physics ,0101 mathematics ,Mathematical Physics - Abstract
We exclude Type I blow-up, which occurs in the form of atomic concentrations of the $$L^2$$ norm for the solution of the 3D incompressible Euler equations. As a corollary we prove nonexistence of discretely self-similar blow-up in the energy conserving scale.
- Published
- 2019
- Full Text
- View/download PDF
3. Circulation and Energy Theorem Preserving Stochastic Fluids
- Author
-
Theodore D. Drivas, Darryl D. Holm, and Engineering & Physical Science Research Council (EPSRC)
- Subjects
Class (set theory) ,General Mathematics ,math-ph ,FOS: Physical sciences ,Fluid models ,01 natural sciences ,0101 Pure Mathematics ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,math.MP ,Mathematics - Analysis of PDEs ,Variational principle ,0102 Applied Mathematics ,0103 physical sciences ,FOS: Mathematics ,Applied mathematics ,Incompressible euler equations ,0101 mathematics ,math.AP ,Mathematical Physics ,Mathematics ,010102 general mathematics ,Fluid Dynamics (physics.flu-dyn) ,Mathematical Physics (math-ph) ,Physics - Fluid Dynamics ,Dissipation ,physics.flu-dyn ,Circulation (fluid dynamics) ,Fluid equation ,Energy (signal processing) ,Analysis of PDEs (math.AP) - Abstract
Smooth solutions of the incompressible Euler equations are characterized by the property that circulation around material loops is conserved. This is the Kelvin theorem. Likewise, smooth solutions of Navier-Stokes are characterized by a generalized Kelvin's theorem, introduced by Constantin-Iyer (2008). In this note, we introduce a class of stochastic fluid equations, whose smooth solutions are characterized by natural extensions of the Kelvin theorems of their deterministic counterparts, which hold along certain noisy flows. These equations are called the stochastic Euler-Poincar\'{e} and stochastic Navier-Stokes-Poincar\'{e} equations respectively. The stochastic Euler-Poincar\'{e} equations were previously derived from a stochastic variational principle by Holm (2015), which we briefly review. Solutions of these equations do not obey pathwise energy conservation/dissipation in general. In contrast, we also discuss a class of stochastic fluid models, solutions of which possess energy theorems but do not, in general, preserve circulation theorems., Comment: 26 pages
- Published
- 2019
- Full Text
- View/download PDF
4. Galilean Boost and Non-uniform Continuity for Incompressible Euler
- Author
-
Dong Li and Jean Bourgain
- Subjects
Physics ,Solution map ,010102 general mathematics ,Complex system ,Statistical and Nonlinear Physics ,01 natural sciences ,Galilean ,symbols.namesake ,Uniform continuity ,0103 physical sciences ,Compressibility ,Euler's formula ,symbols ,Incompressible euler equations ,010307 mathematical physics ,0101 mathematics ,Mathematical Physics ,Mathematical physics - Abstract
By using an idea of localized Galilean boost, we show that the data-to-solution map for incompressible Euler equations is not uniformly continuous in $${H^s({\mathbb{R}}^d)}$$, $${s \ge 0}$$. This settles the end-point case (s = 0) left open in Himonas–Misiolek (Commun Math Phys 296(1):285–301, 2010) and gives a unified treatment for all Hs. We also show the solution map is nowhere uniformly continuous.
- Published
- 2019
- Full Text
- View/download PDF
5. Constructing Turing complete Euler flows in dimension 3
- Author
-
Francisco Presas, Robert Cardona, Eva Miranda, Daniel Peralta-Salas, Universitat Politècnica de Catalunya [Barcelona] (UPC), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Instituto de Ciencias Matemàticas [Madrid] (ICMAT), Universidad Autonoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)-Universidad Carlos III de Madrid [Madrid] (UC3M), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia e Innovación (España), Ministerio de Ciencia, Innovación y Universidades (España), Observatoire de Paris, Université Paris sciences et lettres (PSL), Universidad Autónoma de Madrid (UAM), Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions, Universidad Autonoma de Madrid (UAM), and Universidad Carlos III de Madrid [Madrid] (UC3M)-Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)-Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)
- Subjects
FOS: Computer and information sciences ,Generalized shifts ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,MathematicsofComputing_NUMERICALANALYSIS ,Mathematics::Analysis of PDEs ,Dynamical Systems (math.DS) ,Computational Complexity (cs.CC) ,01 natural sciences ,53 Differential geometry [Classificació AMS] ,Physics::Fluid Dynamics ,contact geometry ,Mathematics - Analysis of PDEs ,Political science ,Incompressible Euler equations ,0103 physical sciences ,FOS: Mathematics ,Incompressible euler equations ,Turing complete ,Mathematics - Dynamical Systems ,0101 mathematics ,[MATH]Mathematics [math] ,010306 general physics ,generalized shifts ,Multidisciplinary ,010102 general mathematics ,Matemàtiques i estadística [Àrees temàtiques de la UPC] ,language.human_language ,incompressible Euler equations ,Computer Science - Computational Complexity ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,Mathematics - Symplectic Geometry ,Contact geometry ,Physical Sciences ,language ,Symplectic Geometry (math.SG) ,Catalan ,Christian ministry ,Humanities ,Beltrami flow ,Analysis of PDEs (math.AP) - Abstract
Can every physical system simulate any Turing machine? This is a classical problem that is intimately connected with the undecidability of certain physical phenomena. Concerning fluid flows, Moore [C. Moore, Nonlinearity 4, 199 (1991)] asked if hydrodynamics is capable of performing computations. More recently, Tao launched a program based on the Turing completeness of the Euler equations to address the blow-up problem in the Navier¿Stokes equations. In this direction, the undecidability of some physical systems has been studied in recent years, from the quantum gap problem to quantum-field theories. To the best of our knowledge, the existence of undecidable particle paths of three-dimensional fluid flows has remained an elusive open problem since Moore¿s works in the early 1990s. In this article, we construct a Turing complete stationary Euler flow on a Riemannian S3 and speculate on its implications concerning Tao¿s approach to the blow-up problem in the Navier¿Stokes equations., Robert Cardona was supported by the Spanish Ministry of Economy and Competitiveness, through the María de Maeztu Program for Units of Excellence in R&D (MDM-2014-0445) via an FPI grant. R.C. and E.M. are partially supported by Grants MTM2015-69135-P/FEDER, the Spanish Ministry of Science and Innovation PID2019-103849GB-I00/AEI/10.13039/501100011033, and Agència de Gestió d’Ajuts Universitaris i de Recerca Grant 2017SGR932. E.M. is supported by the Catalan Institution for Research and Advanced Studies via an ICREA Academia Prize 2016. D.P.-S. is supported by MICINN Grant MTM PID2019-106715GB-C21 and MCIU Grant Europa Excelencia EUR2019-103821. F.P. is supported by MICINN/FEDER Grants MTM2016-79400-P and PID2019-108936GB-C21. This work was partially supported by ICMAT–Severo Ochoa Grant CEX2019-000904-S.
- Published
- 2021
- Full Text
- View/download PDF
6. A Note on Incompressibility of Relativistic Fluids and the Instantaneity of their Pressures
- Author
-
Moritz Reintjes
- Subjects
Spacetime ,010102 general mathematics ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,General Relativity and Quantum Cosmology (gr-qc) ,Relativistic Euler equations ,01 natural sciences ,General Relativity and Quantum Cosmology ,Classical limit ,010305 fluids & plasmas ,Euler equations ,Physics::Fluid Dynamics ,symbols.namesake ,Elliptic curve ,Theory of relativity ,83C99 (Primary), 76B99 (Secondary) ,0103 physical sciences ,symbols ,Compressibility ,Incompressible euler equations ,0101 mathematics ,Mathematical Physics ,Mathematics ,Mathematical physics - Abstract
We introduce a natural notion of incompressibility for fluids governed by the relativistic Euler equations on a fixed background spacetime, and show that the resulting equations reduce to the incompressible Euler equations in the classical limit as $c\rightarrow \infty$. As our main result, we prove that the fluid pressure of solutions of these incompressible "relativistic" Euler equations satisfies an elliptic equation on each of the hypersurfaces orthogonal to the fluid four-velocity, which indicates infinite speed of propagation., Comment: 7 pages. Version 2: Improved wording and presentation
- Published
- 2018
- Full Text
- View/download PDF
7. Chaotic blowup in the 3D incompressible Euler equations on a logarithmic lattice
- Author
-
Alexei A. Mailybaev and Ciro S. Campolina
- Subjects
Logarithm ,Chaotic ,Fluid Dynamics (physics.flu-dyn) ,General Physics and Astronomy ,FOS: Physical sciences ,Physics - Fluid Dynamics ,Euler system ,Vorticity ,01 natural sciences ,010305 fluids & plasmas ,Euler equations ,symbols.namesake ,Lattice (order) ,0103 physical sciences ,Attractor ,symbols ,Applied mathematics ,Incompressible euler equations ,010306 general physics ,Mathematics - Abstract
The dispute on whether the three-dimensional (3D) incompressible Euler equations develop an infinitely large vorticity in a finite time (blowup) keeps increasing due to ambiguous results from state-of-the-art direct numerical simulations (DNS), while the available simplified models fail to explain the intrinsic complexity and variety of observed structures. Here, we propose a new model formally identical to the Euler equations, by imitating the calculus on a 3D logarithmic lattice. This model clarifies the present controversy at the scales of existing DNS and provides the unambiguous evidence of the following transition to the blowup, explained as a chaotic attractor in a renormalized system. The chaotic attractor spans over the anomalously large six-decade interval of spatial scales. For the original Euler system, our results suggest that the existing DNS strategies at the resolution accessible now (and presumably rather long into the future) are unsuitable, by far, for the blowup analysis, and establish new fundamental requirements for the approach to this long-standing problem., 7 pages, 5 figures, 1 supplemental video
- Published
- 2018
8. Algebraic spiral solutions of 2d incompressible Euler
- Author
-
Volker Elling
- Subjects
Class (set theory) ,01 natural sciences ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,symbols.namesake ,Mathematics - Analysis of PDEs ,Condensed Matter::Superconductivity ,0103 physical sciences ,FOS: Mathematics ,Incompressible euler equations ,0101 mathematics ,Algebraic number ,Astrophysics::Galaxy Astrophysics ,Spiral ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Vorticity ,Vortex ,Compressibility ,Euler's formula ,symbols ,76B47, 76B70, 35Q35 ,Analysis ,Analysis of PDEs (math.AP) - Abstract
We consider self-similar solutions of the 2d incompressible Euler equations. We construct a class of solutions with vorticity forming algebraic spirals near the origin, in analogy to vortex sheets rolling up into algebraic spirals.
- Published
- 2013
- Full Text
- View/download PDF
9. The 3D Incompressible Euler Equations with a Passive Scalar: A Road to Blow-Up?
- Author
-
John Gibbon and Edriss S. Titi
- Subjects
Fluids & Plasmas ,math-ph ,Scalar (mathematics) ,FOS: Physical sciences ,No-normal-flow boundary conditions ,01 natural sciences ,Omega ,010305 fluids & plasmas ,math.MP ,Singularity ,Potential vorticity ,Incompressible Euler equations ,0103 physical sciences ,Passive scalar ,Incompressible euler equations ,Boundary value problem ,0101 mathematics ,Null point ,Mathematical Physics ,Mathematical physics ,Physics ,Curl (mathematics) ,Applied Mathematics ,nlin.CD ,010102 general mathematics ,General Engineering ,Mathematical Physics (math-ph) ,Vorticity ,Nonlinear Sciences - Chaotic Dynamics ,Physics::Classical Physics ,Modeling and Simulation ,Chaotic Dynamics (nlin.CD) - Abstract
The 3D incompressible Euler equations with a passive scalar $\theta$ are considered in a smooth domain $\Omega\subset \mathbb{R}^{3}$ with no-normal-flow boundary conditions $\bu\cdot\bhn|_{\partial\Omega} = 0$. It is shown that smooth solutions blow up in a finite time if a null (zero) point develops in the vector $\bB = \nabla q\times\nabla\theta$, provided $\bB$ has no null points initially\,: $\bom = \mbox{curl}\,\bu$ is the vorticity and $q = \bom\cdot\nabla\theta$ is a potential vorticity. The presence of the passive scalar concentration $\theta$ is an essential component of this criterion in detecting the formation of a singularity. The problem is discussed in the light of a kinematic result by Graham and Henyey (2000) on the non-existence of Clebsch potentials in the neighbourhood of null points., Comment: 5 pages, no figures
- Published
- 2013
- Full Text
- View/download PDF
10. Ill-posedness of Leray solutions for the ipodissipative Navier-Stokes equations
- Author
-
Luigi De Rosa, Maria Colombo, and Camillo De Lellis
- Subjects
Physics ,Pure mathematics ,010102 general mathematics ,Regular polygon ,Mathematics::Analysis of PDEs ,Statistical and Nonlinear Physics ,35Q31 35A01 35D30 ,01 natural sciences ,Physics::Fluid Dynamics ,Mathematics - Analysis of PDEs ,0103 physical sciences ,Dissipative system ,Exponent ,FOS: Mathematics ,Initial value problem ,Incompressible euler equations ,010307 mathematical physics ,0101 mathematics ,Fractional Laplacian ,Navier–Stokes equations ,Mathematical Physics ,Ill posedness ,Analysis of PDEs (math.AP) - Abstract
We prove the ill-posedness of Leray solutions to the Cauchy problem for the ipodissipative Navier--Stokes equations, when the dissipative term is a fractional Laplacian $(-\Delta)^\alpha$ with exponent $\alpha < \frac{1}{5}$. The proof follows the ''convex integration methods'' introduced by the second author and L\'aszl\'o Sz\'ekelyhidi Jr. for the incomprresible Euler equations. The methods yield indeed some conclusions even for exponents in the range $[\frac{1}{5}, \frac{1}{2}[$., Comment: arXiv admin note: text overlap with arXiv:1302.2815
- Published
- 2017
- Full Text
- View/download PDF
11. Analytical solutions for the free surface hydrostatic Euler equations
- Author
-
Marie-Odile Bristeau, Jacques Sainte-Marie, Anne-Céline Boulanger, Numerical Analysis, Geophysics and Ecology (ANGE), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt, and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
General Mathematics ,entropic shocks ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Physics::Fluid Dynamics ,symbols.namesake ,law ,Incompressible Euler equations ,0103 physical sciences ,0101 mathematics ,Physics ,Applied Mathematics ,Semi-implicit Euler method ,Mathematical analysis ,free surface flows ,Euler system ,Backward Euler method ,Euler equations ,analytical solutions ,010101 applied mathematics ,Classical mechanics ,Large set (Ramsey theory) ,Free surface ,Compressibility ,symbols ,Hydrostatic equilibrium ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; In this paper we propose a large set of analytical solutions (FRESH-ASSESS) for the hydrostatic incompressible Euler system in 2d and 3d. These solutions mainly concern free surface flows but partially free surface flows are also considered. These analytical solutions can be especially useful for the validation of numerical schemes.
- Published
- 2013
- Full Text
- View/download PDF
12. An Eulerian–Lagrangian form for the Euler equations in Sobolev spaces
- Author
-
Benjamin C. Pooley and James C. Robinson
- Subjects
Inverse ,01 natural sciences ,Eulerian lagrangian ,symbols.namesake ,Mathematics - Analysis of PDEs ,Fixed time ,0103 physical sciences ,FOS: Mathematics ,Incompressible euler equations ,0101 mathematics ,QA ,Trajectory (fluid mechanics) ,Mathematical Physics ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,35Q35, 76B03 (Primary) 35Q31 (Secondary) ,Condensed Matter Physics ,Euler equations ,Sobolev space ,Computational Mathematics ,symbols ,010307 mathematical physics ,Standard theory ,Analysis of PDEs (math.AP) - Abstract
In 2000 Constantin showed that the incompressible Euler equations can be written in an "Eulerian-Lagrangian" form which involves the back-to-labels map (the inverse of the trajectory map for each fixed time). In the same paper a local existence result is proved in certain H��lder spaces $C^{1,��}$. We review the Eulerian-Lagrangian formulation of the equations and prove that given initial data in $H^s$ for $n\geq2$ and $s>\frac{n}{2}+1$, a unique local-in-time solution exists on the $n$-torus that is continuous into $H^s$ and $C^1$ into $H^{s-1}$. These solutions automatically have $C^1$ trajectories. The proof here is direct and does not appeal to results already known about the classical formulation. Moreover, these solutions are regular enough that the classical and Eulerian-Lagrangian formulations are equivalent, therefore what we present amounts to an alternative approach to some of the standard theory., 17 pages, to appear in J. Math. Fluid Mech. Lemmas 4 and 6 revised, several minor changes
- Published
- 2016
13. Damped Infinite Energy Solutions of the 3D Euler and Boussinesq Equations
- Author
-
William Chen and Alejandro Sarria
- Subjects
Mathematics::Analysis of PDEs ,FOS: Physical sciences ,01 natural sciences ,010305 fluids & plasmas ,symbols.namesake ,Singularity ,Mathematics - Analysis of PDEs ,Inviscid flow ,0103 physical sciences ,FOS: Mathematics ,Incompressible euler equations ,0101 mathematics ,Mathematical Physics ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Mathematical Physics (math-ph) ,Euler system ,Term (time) ,Euler's formula ,symbols ,Finite time ,Analysis ,Energy (signal processing) ,Analysis of PDEs (math.AP) - Abstract
We revisit a family of infinite-energy solutions of the 3D incompressible Euler equations proposed by Gibbon et al. [9] and shown to blowup in finite time by Constantin [6]. By adding a damping term to the momentum equation we examine how the damping coefficient can arrest this blowup. Further, we show that similar infinite-energy solutions of the inviscid 3D Boussinesq system with damping can develop a singularity in finite time as long as the damping effects are insufficient to arrest the (undamped) 3D Euler blowup in the associated damped 3D Euler system., Comment: 14 pages; some typos have been corrected
- Published
- 2016
- Full Text
- View/download PDF
14. Stabilized Spectral Element Approximation of the Saint Venant System Using the Entropy Viscosity Technique
- Author
-
Richard Pasquetti, Jean-Luc Guermond, Boyan Popov, Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Control, Analysis and Simulations for TOkamak Research (CASTOR), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), Department of Mathematics [Texas] (TAMU), Texas A&M University [College Station], Laboratoire Jean Alexandre Dieudonné (LJAD), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (LJAD), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
- Subjects
Saint venant ,Spectral element method ,Mathematical analysis ,Euler system ,01 natural sciences ,6. Clean water ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,010101 applied mathematics ,Entropy inequality ,Classical mechanics ,13. Climate action ,0103 physical sciences ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Incompressible euler equations ,0101 mathematics ,Shallow water equations ,ComputingMilieux_MISCELLANEOUS ,Physics::Atmospheric and Oceanic Physics ,Mathematics - Abstract
We consider the Saint Venant system (shallow water equations), i.e. an approximation of the incompressible Euler equations widely used to describe river flows, flooding phenomena or erosion problems. We focus on problems involving dry-wet transitions and propose a solution technique using the Spectral Element Method (SEM) stabilized with a variant of the Entropy Viscosity Method (EVM) that is adapted to treat dry zones.
- Published
- 2015
- Full Text
- View/download PDF
15. On the Global Existence for the Axisymmetric Euler-Boussinesq System in Critical Besov Spaces
- Author
-
Samira Sulaiman, Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
axisymmetric flows ,General Mathematics ,010102 general mathematics ,Mathematical analysis ,Rotational symmetry ,Mathematics::Analysis of PDEs ,Vorticity ,01 natural sciences ,global well-posedness ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,symbols.namesake ,[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] ,Mathematics - Analysis of PDEs ,critical Besov spaces ,0103 physical sciences ,FOS: Mathematics ,Euler's formula ,symbols ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Incompressible euler equations ,Uniqueness ,0101 mathematics ,Analysis of PDEs (math.AP) ,Mathematics - Abstract
This paper is devoted to the global existence and uniqueness results for the three-dimensional Boussinesq system with axisymmetric initial data $v^{0}{\in}B_{2,1}^{5/2}(\RR^3)$ and$ ${\rho}^{0}{\in}B_{2,1}^{1/2}(\RR^3)\cap L^{p}(\RR^3)$ with $p>6.$ This system couples the incompressible Euler equations with a transport-diffusion equation governing the density. In this case the Beale-Kato-Majda criterion is not known to be valid and to circumvent this difficulty we use in a crucial way some geometric properties of the vorticity., Comment: Asymptotic Analysis journal, (2011)
- Published
- 2012
- Full Text
- View/download PDF
16. On formation of a locally self-similar collapse in the incompressible Euler equations
- Author
-
Roman Shvydkoy and Dongho Chae
- Subjects
media_common.quotation_subject ,Mathematics::Analysis of PDEs ,Collapse (topology) ,01 natural sciences ,010305 fluids & plasmas ,Mathematics (miscellaneous) ,Mathematics - Analysis of PDEs ,0103 physical sciences ,Homogeneity (physics) ,FOS: Mathematics ,Incompressible euler equations ,Mathematics - Numerical Analysis ,0101 mathematics ,Invariant (mathematics) ,Scaling ,media_common ,Mathematical physics ,Physics ,Mechanical Engineering ,010102 general mathematics ,Numerical Analysis (math.NA) ,Vorticity ,16. Peace & justice ,Infinity ,Homogeneous ,Analysis ,Analysis of PDEs (math.AP) - Abstract
The paper addresses the question of existence of a locally self-similar blow-up for the incompressible Euler equations. Several exclusion results are proved based on the $L^p$-condition for velocity or vorticity and for a range of scaling exponents. In particular, in $N$ dimensions if in self-similar variables $u \in L^p$ and $u \sim \frac{1}{t^{\a/(1+\a)}}$, then the blow-up does not occur provided $\a >N/2$ or $-1, Comment: A revised version with improved notation, proofs, etc. 19 pages
- Published
- 2012
17. Finite time singularities for the free boundary incompressible Euler equations
- Author
-
Javier Gómez-Serrano, Francisco Gancedo, Charles Fefferman, Angel Castro, Diego Córdoba, Universidad de Sevilla. Departamento de Análisis Matemático, and Universidad de Sevilla. FQM104: Analisis Matematico
- Subjects
Blow-up ,Splash ,FOS: Physical sciences ,Boundary (topology) ,01 natural sciences ,Incompressible ,Physics::Fluid Dynamics ,symbols.namesake ,Euler ,Mathematics (miscellaneous) ,Singularity ,Mathematics - Analysis of PDEs ,0103 physical sciences ,FOS: Mathematics ,Incompressible euler equations ,0101 mathematics ,Mathematical Physics ,Mathematics ,Smoothness (probability theory) ,010102 general mathematics ,Mathematical analysis ,Fluid Dynamics (physics.flu-dyn) ,Mathematical Physics (math-ph) ,Physics - Fluid Dynamics ,16. Peace & justice ,Splat ,Water waves ,Euler's formula ,symbols ,Compressibility ,Gravitational singularity ,010307 mathematical physics ,Statistics, Probability and Uncertainty ,Analysis of PDEs (math.AP) - Abstract
In this paper, we prove the existence of smooth initial data for the 2D free boundary incompressible Euler equations (also known for some particular scenarios as the water wave problem), for which the smoothness of the interface breaks down in finite time into a splash singularity or a splat singularity., 70 pages, 9 figures. Minor revisions
- Published
- 2011
18. Energy of tsunami waves generated by bottom motion
- Author
-
Denys Dutykh, Frédéric Dias, Laboratoire de Mathématiques (LAMA), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Centre de Mathématiques et de Leurs Applications (CMLA), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Mathématiques et de leurs Interactions (INSMI), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Laboratoire de recheche conventionné MESO (LRC MESO), École normale supérieure - Cachan (ENS Cachan)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), EU project TRANSFER, contract no. 037058, and Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
- Subjects
Tsunami wave ,010504 meteorology & atmospheric sciences ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,General Mathematics ,General Physics and Astronomy ,Motion (geometry) ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,Kinetic energy ,01 natural sciences ,010305 fluids & plasmas ,shallow-water equations ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Physics - Geophysics ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Mathematics - Analysis of PDEs ,[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS] ,0103 physical sciences ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Incompressible euler equations ,[NLIN.NLIN-SI]Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI] ,14. Life underwater ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Shallow water equations ,0105 earth and related environmental sciences ,Physics ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Nonlinear Sciences - Exactly Solvable and Integrable Systems ,water waves ,General Engineering ,Mechanics ,Energy budget ,Nonlinear Sciences - Pattern Formation and Solitons ,Physics - Atmospheric and Oceanic Physics ,Free surface ,Physics - Computational Physics ,Energy (signal processing) ,tsunami energy - Abstract
In the vast literature on tsunami research, few articles have been devoted to energy issues. A theoretical investigation on the energy of waves generated by bottom motion is performed here. We start with the full incompressible Euler equations in the presence of a free surface and derive both dispersive and non-dispersive shallow-water equations with an energy equation. It is shown that dispersive effects only appear at higher order in the energy budget. Then we solve the Cauchy-Poisson problem of tsunami generation for the linearized water wave equations. Exchanges between potential and kinetic energies are clearly revealed., Comment: 20 pages, 12 figures. Accepted to Proceedings of the Royal Society A. Other authors papers and supporting material can be downloaded at http://www.lama.univ-savoie.fr/~dutykh
- Published
- 2009
- Full Text
- View/download PDF
19. Bursting Dynamics of the 3D Euler Equations in Cylindrical Domains
- Author
-
Alex Mahalov, Basil Nicolaenko, François Golse, Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics and Statistics [Tempe, Arizona], Arizona State University [Tempe] (ASU), and C. Bardos, A. Fursikov
- Subjects
Physics ,Semi-implicit Euler method ,Euler number (physics) ,010102 general mathematics ,Mathematical analysis ,Incompressible Euler Equations ,01 natural sciences ,010305 fluids & plasmas ,Euler equations ,Euler's laws of motion ,Physics::Fluid Dynamics ,symbols.namesake ,Riemann problem ,Classical mechanics ,0103 physical sciences ,(MSC) 35Q35 ,76B03 ,76U05 ,symbols ,Euler's formula ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Rigid Body Dynamics ,Homoclinic orbit ,0101 mathematics ,Euler's equations ,Enstrophy Bursts ,Rotating Fluids - Abstract
A class of three-dimensional initial data characterized by uniformly large vorticity is considered for the Euler equations of incompressible fluids. The fast singular oscillating limits of the Euler equations are studied for parametrically resonant cylinders. Resonances of fast swirling Beltrami waves deplete the Euler nonlinearity. The resonant Euler equations are systems of three-dimensional rigid body equations, coupled or not. Some cases of these resonant systems have homoclinic cycles, and orbits in the vicinity of these homoclinic cycles lead to bursts of the Euler solution measured in Sobolev norms of order higher than that corresponding to the enstrophy.
- Published
- 2008
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.