1. Partitions and functional Santalo inequalities
- Author
-
Joseph Lehec, Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM), and Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES ,Inequality ,General Mathematics ,media_common.quotation_subject ,MathematicsofComputing_NUMERICALANALYSIS ,Computer Science::Computational Complexity ,Computer Science::Computational Geometry ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,01 natural sciences ,Argument ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,FOS: Mathematics ,Mathematics::Metric Geometry ,Direct proof ,0101 mathematics ,Mathematics ,media_common ,Computer Science::Cryptography and Security ,Partition theorem ,MSC: 39B62 ,010102 general mathematics ,Functional inequalities ,TheoryofComputation_GENERAL ,Inégalités fonctionnelles ,Functional Analysis (math.FA) ,010101 applied mathematics ,Mathematics - Functional Analysis ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,39B62 ,Mathematical economics ,Logarithmic form - Abstract
We give a direct proof of a functional Santalo inequality due to Fradelizi and Meyer. This provides a new proof of the Blaschke-Santalo inequality. The argument combines a logarithmic form of the Prekopa-Leindler inequality and a partition theorem of Yao and Yao., Comment: 6 pages, file might be slightly different from the published version
- Published
- 2010
- Full Text
- View/download PDF