Back to Search Start Over

Partitions and functional Santalo inequalities

Authors :
Joseph Lehec
Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA)
Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM)
Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)
Source :
Archiv der Mathematik, Archiv der Mathematik, Springer Verlag, 2009, 92 (1), pp.89-94. ⟨10.1007/s00013-008-3014-0⟩
Publication Year :
2010
Publisher :
arXiv, 2010.

Abstract

We give a direct proof of a functional Santalo inequality due to Fradelizi and Meyer. This provides a new proof of the Blaschke-Santalo inequality. The argument combines a logarithmic form of the Prekopa-Leindler inequality and a partition theorem of Yao and Yao.<br />Comment: 6 pages, file might be slightly different from the published version

Details

ISSN :
0003889X and 14208938
Database :
OpenAIRE
Journal :
Archiv der Mathematik, Archiv der Mathematik, Springer Verlag, 2009, 92 (1), pp.89-94. ⟨10.1007/s00013-008-3014-0⟩
Accession number :
edsair.doi.dedup.....8995d283f7e6f7c56cc545ebb79b93b3
Full Text :
https://doi.org/10.48550/arxiv.1011.2119