Back to Search
Start Over
Partitions and functional Santalo inequalities
- Source :
- Archiv der Mathematik, Archiv der Mathematik, Springer Verlag, 2009, 92 (1), pp.89-94. ⟨10.1007/s00013-008-3014-0⟩
- Publication Year :
- 2010
- Publisher :
- arXiv, 2010.
-
Abstract
- We give a direct proof of a functional Santalo inequality due to Fradelizi and Meyer. This provides a new proof of the Blaschke-Santalo inequality. The argument combines a logarithmic form of the Prekopa-Leindler inequality and a partition theorem of Yao and Yao.<br />Comment: 6 pages, file might be slightly different from the published version
- Subjects :
- TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES
Inequality
General Mathematics
media_common.quotation_subject
MathematicsofComputing_NUMERICALANALYSIS
Computer Science::Computational Complexity
Computer Science::Computational Geometry
[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]
01 natural sciences
Argument
ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
FOS: Mathematics
Mathematics::Metric Geometry
Direct proof
0101 mathematics
Mathematics
media_common
Computer Science::Cryptography and Security
Partition theorem
MSC: 39B62
010102 general mathematics
Functional inequalities
TheoryofComputation_GENERAL
Inégalités fonctionnelles
Functional Analysis (math.FA)
010101 applied mathematics
Mathematics - Functional Analysis
TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES
39B62
Mathematical economics
Logarithmic form
Subjects
Details
- ISSN :
- 0003889X and 14208938
- Database :
- OpenAIRE
- Journal :
- Archiv der Mathematik, Archiv der Mathematik, Springer Verlag, 2009, 92 (1), pp.89-94. ⟨10.1007/s00013-008-3014-0⟩
- Accession number :
- edsair.doi.dedup.....8995d283f7e6f7c56cc545ebb79b93b3
- Full Text :
- https://doi.org/10.48550/arxiv.1011.2119