4 results on '"Simple Connectedness"'
Search Results
2. Coverings of laura algebras: The standard case
- Author
-
Juan Carlos Bustamante, Patrick Le Meur, Ibrahim Assem, Groupe de recherche en théorie des représentations des algèbres, Université de Sherbrooke (UdeS), Departamento de Matematicas - Universidad San Fransisco de Quito, Universidad San Fransisco de Quito, Centre de Mathématiques et de Leurs Applications (CMLA), and École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
16G10 ,Laura Algebras ,16G70 ,01 natural sciences ,0103 physical sciences ,FOS: Mathematics ,Representation Theory (math.RT) ,0101 mathematics ,Algebra over a field ,Mathematics ,Algebra and Number Theory ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Group (mathematics) ,010102 general mathematics ,16G60 ,Simple Connectedness ,16E65 ,Cohomology ,Algebra ,Representations of Algebras ,Covering Theory ,If and only if ,Galois coverings ,Hochschild Cohomology ,Component (group theory) ,010307 mathematical physics ,Mathematics - Representation Theory - Abstract
In this paper, we study the covering theory of laura algebras. We prove that if a connected laura algebra is standard (that is, it is not quasi-tilted of canonical type and its connecting components are standard), then this algebra has nice Galois coverings associated to the coverings of the connecting component. As a consequence, we show that the first Hochschild cohomology group of a standard laura algebra vanishes if and only if it has no proper Galois coverings., The main result on the non-standard case was reformulated due to an inaccuracy in the previous version. Lemma 6.1 was removed due to a simplification. The last section on the special biserial case was removed. Typos corrected and bibliography updated. Final version to appear in Journal of Algebra
- Published
- 2010
- Full Text
- View/download PDF
3. Special biserial algebras with no outer derivations
- Author
-
Patrick Le Meur, Ibrahim Assem, Juan Carlos Bustamante, Département de mathématiques [Sherbrooke] (UdeS), Faculté des sciences [Sherbrooke] (UdeS), Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS), Centre de Mathématiques et de Leurs Applications (CMLA), and École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,General Mathematics ,01 natural sciences ,Hochschild cohomology ,fundamental group ,symbols.namesake ,Mathematics::K-Theory and Homology ,Euler characteristic ,Mathematics::Category Theory ,simple connectedness ,0103 physical sciences ,Simply connected space ,FOS: Mathematics ,0101 mathematics ,Algebraically closed field ,Representation Theory (math.RT) ,Mathematics::Representation Theory ,Mathematics ,16E40, 16G60 ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Group (mathematics) ,010102 general mathematics ,Mathematics::Rings and Algebras ,Mathematics - Rings and Algebras ,Cohomology ,Rings and Algebras (math.RA) ,Special biserial algebras ,Bimodule ,symbols ,010307 mathematical physics ,Isomorphism ,Indecomposable module ,Mathematics - Representation Theory - Abstract
Let $A$ be a special biserial algebra over an algebraically closed field. We show that the first Hohchshild cohomology group of $A$ with coefficients in the bimodule $A$ vanishes if and only if $A$ is representation finite and simply connected (in the sense of Bongartz and Gabriel), if and only if the Euler characteristic of $Q$ equals the number of indecomposable non uniserial projective injective $A$-modules (up to isomorphism). Moreover, if this is the case, then all the higher Hochschild cohomology groups of $A$ vanish., Comment: 13 pages, submitted
- Published
- 2011
- Full Text
- View/download PDF
4. On Galois coverings and tilting modules
- Author
-
Patrick Le Meur, Centre de Mathématiques et de Leurs Applications (CMLA), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Jussieu (IMJ), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Fundamental group ,Pure mathematics ,16G10 ,simplement connexe ,01 natural sciences ,Representation theory ,16E99 ,dimension finie ,algèbre ,0103 physical sciences ,Simply connected space ,FOS: Mathematics ,Representation Theory (math.RT) ,0101 mathematics ,Algebraically closed field ,Mathematics::Representation Theory ,Mathematics ,Discrete mathematics ,Algebra and Number Theory ,Tilting theory ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Group (mathematics) ,010102 general mathematics ,Simple connectedness ,Cohomology ,module basculant ,revêtement galoisien ,Finite dimensional algebra ,Bijection ,Galois covering ,010307 mathematical physics ,Mathematics - Representation Theory - Abstract
Let A be a basic connected finite dimensional algebra over an algebraically closed field, let G be a group, let T be a basic tilting A-module and let B the endomorphism algebra of T. Under a hypothesis on T, we establish a correspondence between the Galois coverings with group G of A and the Galois coverings with group G of B. The hypothesis on T is expressed using the Hasse diagram of basic tilting A-modules and is always verified if A is of finite representation type. Then, we use the above correspondence to prove that A is simply connected if and only if B is simply connected, under the same hypothesis on T. Finally, we prove that if a tilted algebra B of type Q is simply connected, then Q is a tree and the first Hochschild cohomology group of B vanishes, Fourth version. A result on the simple connectedness of tilted algebras was added
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.