Back to Search Start Over

Coverings of laura algebras: The standard case

Authors :
Juan Carlos Bustamante
Patrick Le Meur
Ibrahim Assem
Groupe de recherche en théorie des représentations des algèbres
Université de Sherbrooke (UdeS)
Departamento de Matematicas - Universidad San Fransisco de Quito
Universidad San Fransisco de Quito
Centre de Mathématiques et de Leurs Applications (CMLA)
École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Algebra, Journal of Algebra, Elsevier, 2010, 323 (1), pp.83--120. ⟨10.1016/j.jalgebra.2009.08.013⟩
Publication Year :
2010
Publisher :
Elsevier BV, 2010.

Abstract

In this paper, we study the covering theory of laura algebras. We prove that if a connected laura algebra is standard (that is, it is not quasi-tilted of canonical type and its connecting components are standard), then this algebra has nice Galois coverings associated to the coverings of the connecting component. As a consequence, we show that the first Hochschild cohomology group of a standard laura algebra vanishes if and only if it has no proper Galois coverings.<br />The main result on the non-standard case was reformulated due to an inaccuracy in the previous version. Lemma 6.1 was removed due to a simplification. The last section on the special biserial case was removed. Typos corrected and bibliography updated. Final version to appear in Journal of Algebra

Details

ISSN :
00218693 and 1090266X
Volume :
323
Database :
OpenAIRE
Journal :
Journal of Algebra
Accession number :
edsair.doi.dedup.....7ff280e46e065e4f7539a136ce1d032d
Full Text :
https://doi.org/10.1016/j.jalgebra.2009.08.013