1. Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields
- Author
-
S. Sakata, M. Ehret, Nigel Woolsey, Markus Roth, J. J. Honrubia, J.-R. Marquès, R. Bouillaud, J. Servel, Vladimir Tikhonchuk, P. Forestier-Colleoni, Sadaoki Kojima, S. Dorard, R. Crowston, S. Hulin, Joao Santos, F. Serres, E. Loyez, Gianluca Gregori, Zhe Zhang, J.-L. Dubois, M. Chevrot, Shinsuke Fujioka, L. Giuffrida, Mathieu Bailly-Grandvaux, Dimitri Batani, C. Bellei, Ph. Nicolaï, Gabriel Schaumann, J. E. Cross, Alessio Morace, Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institute of laser Engineering, Osaka University [Osaka], E.T.S.I. Aeronauticos (E.T.S.I.), Universidad Politécnica de Madrid (UPM), Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Oxford], University of Oxford, Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom, Institut für Kernphysik [Darmstadt], Technische Universität Darmstadt - Technical University of Darmstadt (TU Darmstadt), Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB), ANR-11-BS04-0014,TERRE,Transport électronique en régime relativiste dans des plasmas denses(2011), ANR-10-IDEX-0003,IDEX BORDEAUX,Initiative d'excellence de l'Université de Bordeaux(2010), European Project: 633053,H2020,EURATOM-Adhoc-2014-20,EUROfusion(2014), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), University of Oxford [Oxford], Technische Universität Darmstadt (TU Darmstadt), and Università degli Studi di Milano-Bicocca [Milano] (UNIMIB)
- Subjects
Thermonuclear fusion ,Science ,General Physics and Astronomy ,Electron ,01 natural sciences ,7. Clean energy ,General Biochemistry, Genetics and Molecular Biology ,Article ,010305 fluids & plasmas ,law.invention ,law ,0103 physical sciences ,Relativistic electron beam ,lcsh:Science ,010306 general physics ,Inertial confinement fusion ,Physics ,[PHYS]Physics [physics] ,Multidisciplinary ,General Chemistry ,Plasma ,Laser ,Computational physics ,Particle acceleration ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,Physics::Accelerator Physics ,Electron temperature ,lcsh:Q - Abstract
Intense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser–plasma interaction. Here we demonstrate that an efficient guiding of MeV electrons with about 30 MA current in solid matter is obtained by imposing a laser-driven longitudinal magnetostatic field of 600 T. In the magnetized conditions the transported energy density and the peak background electron temperature at the 60-μm-thick target's rear surface rise by about a factor of five, as unfolded from benchmarked simulations. Such an improvement of energy-density flux through dense matter paves the ground for advances in laser-driven intense sources of energetic particles and radiation, driving matter to extreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessible at the laboratory scale and achieving high-gain laser-driven thermonuclear fusion., Efficient energy transport by laser-driven relativistic electron beams is crucial in many applications including inertial confinement fusion, and particle acceleration. Here the authors demonstrate relativistic electron beam guiding in dense plasma with an externally imposed high magnetic field.
- Published
- 2018
- Full Text
- View/download PDF