1. Conjugacy theorems for loop reductive group schemes and Lie algebras
- Author
-
Arturo Pianzola, Vladimir Chernousov, Philippe Gille, University of Alberta, Algèbre, géométrie, logique (AGL), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,Class (set theory) ,CONJUGACY ,Matemáticas ,General Mathematics ,TORSOR ,11E72, 14L30, 14E20 ,Group Theory (math.GR) ,01 natural sciences ,NON-ABELIAN COHOMOLOGY ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] ,Matemática Pura ,purl.org/becyt/ford/1 [https] ,Mathematics::Group Theory ,High Energy Physics::Theory ,Mathematics - Algebraic Geometry ,Conjugacy class ,Simple (abstract algebra) ,Mathematics::Quantum Algebra ,0103 physical sciences ,Lie algebra ,building ,FOS: Mathematics ,non-abelian cohomology ,0101 mathematics ,Mathematics::Representation Theory ,Algebraic Geometry (math.AG) ,Mathematics ,Laurent polynomial ,010102 general mathematics ,[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA] ,purl.org/becyt/ford/1.1 [https] ,Mathematics - Rings and Algebras ,LOOP REDUCTIVE GROUP SCHEME ,Reductive group ,BUILDING ,Loop (topology) ,Laurent polynomials ,torsor ,Rings and Algebras (math.RA) ,LAURENT POLYNOMIALS ,010307 mathematical physics ,Affine transformation ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Mathematics - Group Theory ,Reductive group scheme ,CIENCIAS NATURALES Y EXACTAS - Abstract
The conjugacy of split Cartan subalgebras in the finite dimensional simple case (Chevalley) and in the symmetrizable Kac-Moody case (Peterson-Kac) are fundamental results of the theory of Lie algebras. Among the Kac-Moody Lie algebras the affine algebras stand out. This paper deals with the problem of conjugacy for a class of algebras --extended affine Lie algebras-- that are in a precise sense higher nullity analogues of the affine algebras. Unlike the methods used by Peterson-Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of J. Tits on buildings, Publi\'e dans Bulletin of Mathematical Sciences 4 (2014), 281-324
- Published
- 2014
- Full Text
- View/download PDF