1. SuperpixelGridMasks Data Augmentation:Application to Precision Health and Other Real-world Data
- Author
-
Karim Hammoudi, Adnane Cabani, Bouthaina Slika, Halim Benhabiles, Fadi Dornaika, Mahmoud Melkemi, Institut de Recherche en Informatique Mathématiques Automatique Signal - IRIMAS - UR 7499 [IRIMAS], École Supérieure d’Ingénieurs en Génie Électrique [ESIGELEC], Euskal Herriko Unibertsitatea [Guipúzcoa] [EHU], University of the Basque Country/Euskal Herriko Unibertsitatea [UPV/EHU], Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN], Bio-Micro-Electro-Mechanical Systems - IEMN [BIOMEMS - IEMN], JUNIA [JUNIA], Institut de Recherche en Informatique Mathématiques Automatique Signal - IRIMAS - UR 7499 (IRIMAS), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA)), École Supérieure d’Ingénieurs en Génie Électrique (ESIGELEC), Euskal Herriko Unibertsitatea [Guipúzcoa] (EHU), Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Bio-Micro-Electro-Mechanical Systems - IEMN (BIOMEMS - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), JUNIA (JUNIA), and Université catholique de Lille (UCL)
- Subjects
[SPI]Engineering Sciences [physics] ,Artificial Intelligence ,Health Informatics ,Computer Science Applications ,Information Systems - Abstract
ressources projet: https://github.com/hammoudiproject/SuperpixelGridMasksdatasets used for the article: 1 Dataset Chest X-Ray Images: https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia2 A PASCAL VOC dataset: http://host.robots.ox.ac.uk/pascal/VOC/databases.html#VOC2005_1; International audience; A novel approach of data augmentation based on irregular superpixel decomposition is proposed. This approach called SuperpixelGridMasks permits to extend original image datasets that are required by training stages of machine learning-related analysis architectures towards increasing their performances. Three variants named SuperpixelGridCut, SuperpixelGridMean, and SuperpixelGridMix are presented. These grid-based methods produce a new style of image transformations using the dropping and fusing of information. Extensive experiments using various image classification models as well as precision health and surrounding real-world datasets show that baseline performances can be significantly outperformed using our methods. The comparative study also shows that our methods can overpass the performances of other data augmentations. SuperpixelGridCut, SuperpixelGridMean, and SuperpixelGridMix codes are publicly available at https://github.com/hammoudiproject/SuperpixelGridMasks.
- Published
- 2023
- Full Text
- View/download PDF