1. Statistical analysis of large simulated yield datasets for studying climate change effects
- Author
-
David Makowski, Senthold Asseng, Frank Ewert, Simona Bassu, Jean-Louis Durand, Pierre Martre, Myriam Adam, Pramod K. Aggarwal, Carlos Angulo, Christian Baron, Bruno Basso, Patrick Bertuzzi, Christian Biernath, Hendrik Boogaard, Kenneth J. Boote, Nadine Brisson, Davide Cammarano, Andrew J. Challinor, Sjakk J. G. Conijn, Marc Corbeels, Delphine Deryng, Giacomo De Sanctis, Jordi Doltra, Sebastian Gayler, Richard Goldberg, Patricio Grassini, Jerry L. Hatfield, Lee Heng, Steven Hoek, Josh Hooker, Tony L. A. Hunt, Joachim Ingwersen, Cesar Izaurralde, Raymond E. E. Jongschaap, James W. Jones, Armen R. Kemanian, Christian Kersebaum, Soo-Hyung Kim, Jon Lizaso, Christoph Müller, Naresh S. Kumar, Claas Nendel, Garry J. O'Leary, Jorgen E. Olesen, Tom M. Osborne, Taru Palosuo, Maria V. Pravia, Eckart Priesack, Dominique Ripoche, Cynthia Rosenzweig, Alexander C. Ruane, Fredirico Sau, Mickhail A. Semenov, Iurii Shcherbak, Pasquale Steduto, Claudio Stöckle, Pierre Stratonovitch, Thilo Streck, Iwan Supit, Fulu Tao, Edmar I. Teixeira, Peter Thorburn, Denis Timlin, Maria Travasso, Reimund Rötter, Katharina Waha, Daniel Wallach, Jeffrey W. White, Jimmy R. Williams, Joost Wolf, Agronomie, Institut National de la Recherche Agronomique (INRA)-AgroParisTech, University of Florida [Gainesville] (UF), Rheinische Friedrich-Wilhelms-Universität Bonn, Unité de Recherche Pluridisciplinaire Prairies et Plantes Fourragères (P3F), Institut National de la Recherche Agronomique (INRA), Génétique Diversité et Ecophysiologie des Céréales (GDEC), Institut National de la Recherche Agronomique (INRA)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP), Université Blaise Pascal - Clermont-Ferrand 2 (UBP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Michigan State University [East Lansing], Michigan State University System, Agroclim (AGROCLIM), German Research Center for Environmental Health, Centre for Geo-Information, University of Leeds, International Center for Tropical Agriculture, Wageningen University and Research [Wageningen] (WUR), Chinese Academy of Sciences [Changchun Branch] (CAS), University of East Anglia, Catabrian Agricultural Research and Training Center (CIFA), University of Tübingen, NASA Goddard Institute for Space Studies (GISS), NASA Goddard Space Flight Center (GSFC), University of Nebraska [Lincoln], University of Nebraska System, National Laboratory for Agriculture and Environment, International Atomic Energy Agency [Vienna] (IAEA), University of Reading (UOR), University of Guelph, University of Hohenheim, Joint Global Change Research Institute, Instituto Nacional de Investigación Agropecuaria (INIA), Leibniz-Zentrum für Agrarlandschaftsforschung = Leibniz Centre for Agricultural Landscape Research (ZALF), University of Washington, Universidad Politécnica de Madrid (UPM), Potsdam Institute for Climate Impact Research (PIK), Indian Agricultural Research Institute (IARI), Department of Environment and Primary Industries, Landscape and Water Sciences, Aarhus University [Aarhus], Agrifood Research Finland, Pennsylvania State University (Penn State), Penn State System, Rothamsted Research, FAO Sub-regional Office for Eastern Africa [Addis Ababa, Ethiopie] (FAO), Food and Agriculture Organization of the United Nations [Rome, Italie] (FAO), Washington State University (WSU), Plant & Food Research, Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), USDA-ARS : Agricultural Research Service, Institute for Climate and Water, AGroécologie, Innovations, teRritoires (AGIR), Institut National de la Recherche Agronomique (INRA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Arid-Land Agricultural Research Center, Texas A&M University System, Hillel, D., Rosenzweig, C., Institut National de la Recherche Agronomique ( INRA ) -AgroParisTech, University of Florida, University of Bonn (Rheinische Friedrich-Wilhelms), Unité de Recherche Pluridisciplinaire Prairies et Plantes Fourragères ( P3F ), Institut National de la Recherche Agronomique ( INRA ), Génétique Diversité et Ecophysiologie des Céréales ( GDEC ), Université Clermont Auvergne ( UCA ), Université Blaise Pascal (Clermont Ferrand 2) ( UBP ), Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CGIAR Research Program on Climate Change, Agriculture and Food Security ( CCAFS ), Michigan State University, UE Agroclim ( UE AGROCLIM ), Wageningen University and Research Center ( WUR ), Chinese Academy of Sciences [Changchun Branch] ( CAS ), Catabrian Agricultural Research and Training Center ( CIFA ), NASA Goddard Institute for Space Studies ( GISS ), NASA Goddard Space Flight Center ( GSFC ), University of Nebraska Lincoln ( UNL ), International Atomic Energy Agency [Vienna] ( IAEA ), University of Reading ( UOR ), Instituto Nacional de Investigación Agropecuaria, Leibniz Centre for Agricultural Landscape Research, Universidad Politécnica de Madrid ( UPM ), Potsdam Institute for Climate Impact Research ( PIK ), Indian Agricultural Research Institute ( IARI ), Aarhus University, PennState University [Pennsylvania] ( PSU ), Food and Agricultural Organization ( FAO ), Washington State University ( WSU ), New Zealand Institute for Plant and Food Research Limited, Commonwealth Scientific and Industrial Research Organisation, United States Department of Agriculture - Agricultural Research Service, UMR : AGroécologie, Innovations, TeRritoires, Ecole Nationale Supérieure Agronomique de Toulouse, Texas A and M University ( TAMU ), AgroParisTech-Institut National de la Recherche Agronomique (INRA), University of Florida [Gainesville], Génétique Diversité et Ecophysiologie des Céréales - Clermont Auvergne (GDEC), Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne (UCA), Université Blaise Pascal (Clermont Ferrand 2) (UBP), UE Agroclim (UE AGROCLIM), Wageningen University and Research Center (WUR), Food and Agricultural Organization (FAO), Helmholtz Zentrum München = German Research Center for Environmental Health, University of East Anglia [Norwich] (UEA), University of Nebraska–Lincoln, Biotechnology and Biological Sciences Research Council (BBSRC), and Université de Toulouse (UT)-Université de Toulouse (UT)
- Subjects
analyse de données ,[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,Earth Observation and Environmental Informatics ,010504 meteorology & atmospheric sciences ,Yield (finance) ,data analysis ,Climate change ,01 natural sciences ,Agro Water- en Biobased Economy ,statistical analysis ,Effects of global warming ,Aardobservatie en omgevingsinformatica ,Life Science ,Alterra - Centrum Bodem ,[ SDV.SA ] Life Sciences [q-bio]/Agricultural sciences ,global change ,0105 earth and related environmental sciences ,2. Zero hunger ,changement climatique ,WIMEK ,Mathematical model ,analyse statistique ,Crop yield ,Soil Science Centre ,Global change ,Statistical model ,04 agricultural and veterinary sciences ,15. Life on land ,PE&RC ,Climate resilience ,Climate Resilience ,Plant Production Systems ,Klimaatbestendigheid ,13. Climate action ,Plantaardige Productiesystemen ,Climatology ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Environmental science - Abstract
Many studies have been carried out during the last decade to study the effect of climate change on crop yields and other key crop characteristics. In these studies, one or several crop models were used to simulate crop growth and development for different climate scenarios that correspond to different projections of atmospheric CO2 concentration, temperature, and rainfall changes (Semenov et al., 1996; Tubiello and Ewert, 2002; White et al., 2011). The Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013) builds on these studies with the goal of using an ensemble of multiple crop models in order to assess effects of climate change scenarios for several crops in contrasting environments. These studies generate large datasets, including thousands of simulated crop yield data. They include series of yield values obtained by combining several crop models with different climate scenarios that are defined by several climatic variables (temperature, CO2, rainfall, etc.). Such datasets potentially provide useful information on the possible effects of different climate change scenarios on crop yields. However, it is sometimes difficult to analyze these datasets and to summarize them in a useful way due to their structural complexity; simulated yield data can differ among contrasting climate scenarios, sites, and crop models. Another issue is that it is not straightforward to extrapolate the results obtained for the scenarios to alternative climate change scenarios not initially included in the simulation protocols. Additional dynamic crop model simulations for new climate change scenarios are an option but this approach is costly, especially when a large number of crop models are used to generate the simulated data, as in AgMIP. Statistical models have been used to analyze responses of measured yield data to climate variables in past studies (Lobell et al., 2011), but the use of a statistical model to analyze yields simulated by complex process-based crop models is a rather new idea. We demonstrate herewith that statistical methods can play an important role in analyzing simulated yield data sets obtained from the ensembles of process-based crop models. Formal statistical analysis is helpful to estimate the effects of different climatic variables on yield, and to describe the between-model variability of these effects.
- Published
- 2015
- Full Text
- View/download PDF