Back to Search
Start Over
A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration
- Source :
- Agricultural and Forest Meteorology, Agricultural and Forest Meteorology, Elsevier Masson, 2015, 214-215, pp.483-493. ⟨10.1016/j.agrformet.2015.09.013⟩, Agricultural and Forest Meteorology, 214-215, 483-493, Agricultural and Forest Meteorology, 2015, 214-215, pp.483-493. ⟨10.1016/j.agrformet.2015.09.013⟩, Agricultural and Forest Meteorology, Elsevier Masson, 2015, 214-215, pp.483-493. 〈10.1016/j.agrformet.2015.09.013〉, Agricultural and Forest Meteorology 214-215 (2015), Makowski, D, Asseng, S, Ewert, F, Bassu, S, Durand, J L, Li, T, Martre, P, Adam, M, Aggarwal, P K, Angulo, C, Baron, C, Basso, B, Bertuzzi, P, Biernath, C, Boogaard, H, Boote, K J, Bouman, B, Bregaglio, S, Brisson, N, Buis, S, Cammarano, D, Challinor, A J, Confalonieri, R, Conijn, J G, Corbeels, M, Deryng, D, De Sanctis, G, Doltra, J, Fumoto, T, Gaydon, D, Gayler, S, Goldberg, R, Grant, R F, Grassini, P, Hatfield, J L, Hasegawa, T, Heng, L, Hoek, S, Hooker, J, Hunt, L A, Ingwersen, J, Izaurralde, R C, Jongschaap, R E E, Jones, J W, Kemanian, R A, Kersebaum, K C, Kim, S-H, Lizaso, J, Marcaida Ill, M, Müller, C, Nakagawa, H, Naresh Kumar, S, Nendel, C, O'Leary, G J, Olesen, J E, Oriol, P, Osborne, T M, Palosuo, T, Pravia, M V, Priesack, E, Ripoche, D, Rosenzweig, C, Ruane, A C, Ruget, F, Sau, F, Semenov, M A, Shcherbak, I, Singh, B, Singh, U, Soo, H K, Steduto, P, Stöckle, C, Stratonovitch, P, Streck, T, Supit, I, Tang, L, Tao, F, Teixeira, E I, Thorburn, P, Timlin, D, Travasso, M, Rötter, R P, Waha, K, Wallach, D, White, J W, Wilkens, P, Williams, J R, Wolf, J, Yin, X, Yoshida, H, Zhang, Z & Zhu, Y 2015, ' A statistical analysis of three ensembles of crop model responses totemperature and CO 2 concentration ', Agricultural and Forest Meteorology, vol. 214-215, pp. 483-493 . https://doi.org/10.1016/j.agrformet.2015.09.013
- Publication Year :
- 2015
- Publisher :
- HAL CCSD, 2015.
-
Abstract
- Ensembles of process-based crop models are increasingly used to simulate crop growth for scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of simulated crop yield data. Such datasets potentially provide new information but it is difficult to summarize them in a useful way due to their structural complexities. An associated issue is that it is not straightforward to compare crops and to interpolate the results to alternative climate scenarios not initially included in the simulation protocols. Here we demonstrate that statistical models based on random-coefficient regressions are able to emulate ensembles of process-based crop models. An important advantage of the proposed statistical models is that they can interpolate between temperature levels and between CO2 concentration levels, and can thus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without rerunning the original complex crop models. Our approach is illustrated with three yield datasets simulated by 19 maize models, 26 wheat models, and 13 rice models. Several statistical models are fitted to these datasets, and are then used to analyze the variability of the yield response to [CO2] and temperature. Based on our results, we show that, for wheat, a [CO2] increase is likely to outweigh the negative effect of a temperature increase of +2 degrees C in the considered sites. Compared to wheat, required levels of [CO2] increase are much higher for maize, and intermediate for rice. For all crops, uncertainties in simulating climate change impacts increase more with temperature than with elevated [CO2]. (C) 2015 Elsevier B.V. All rights reserved.
- Subjects :
- [SDV.SA]Life Sciences [q-bio]/Agricultural sciences
Atmospheric Science
010504 meteorology & atmospheric sciences
F62 - Physiologie végétale - Croissance et développement
01 natural sciences
Statistics
Aardobservatie en omgevingsinformatica
Climate change
Crop model
[ SDV.SA ] Life Sciences [q-bio]/Agricultural sciences
Triticum
Mathematics
2. Zero hunger
Global and Planetary Change
Mathematical model
Air
Forestry
Regression analysis
04 agricultural and veterinary sciences
PE&RC
[ SDE.MCG ] Environmental Sciences/Global Changes
Rendement des cultures
Plant Production Systems
Statistical model
Modèle mathématique
Atmosphère
Earth Observation and Environmental Informatics
Yield
Crop Physiology
P40 - Météorologie et climatologie
[SDE.MCG]Environmental Sciences/Global Changes
Oryza sativa
Zea mays
Earth System Science
Emulator
Agro Water- en Biobased Economy
Alterra - Centrum Bodem
Precipitation
Croissance
0105 earth and related environmental sciences
Meta-model
Changement climatique
Hydrology
Modélisation des cultures
Crop yield
Simulation modeling
Soil Science Centre
15. Life on land
Température
Laboratorium voor Phytopathologie
Climate Resilience
13. Climate action
Klimaatbestendigheid
Yield (chemistry)
Plantaardige Productiesystemen
Laboratory of Phytopathology
040103 agronomy & agriculture
0401 agriculture, forestry, and fisheries
Leerstoelgroep Aardsysteemkunde
Plante de culture
Agronomy and Crop Science
Dioxyde de carbone
Subjects
Details
- Language :
- English
- ISSN :
- 01681923
- Database :
- OpenAIRE
- Journal :
- Agricultural and Forest Meteorology, Agricultural and Forest Meteorology, Elsevier Masson, 2015, 214-215, pp.483-493. ⟨10.1016/j.agrformet.2015.09.013⟩, Agricultural and Forest Meteorology, 214-215, 483-493, Agricultural and Forest Meteorology, 2015, 214-215, pp.483-493. ⟨10.1016/j.agrformet.2015.09.013⟩, Agricultural and Forest Meteorology, Elsevier Masson, 2015, 214-215, pp.483-493. 〈10.1016/j.agrformet.2015.09.013〉, Agricultural and Forest Meteorology 214-215 (2015), Makowski, D, Asseng, S, Ewert, F, Bassu, S, Durand, J L, Li, T, Martre, P, Adam, M, Aggarwal, P K, Angulo, C, Baron, C, Basso, B, Bertuzzi, P, Biernath, C, Boogaard, H, Boote, K J, Bouman, B, Bregaglio, S, Brisson, N, Buis, S, Cammarano, D, Challinor, A J, Confalonieri, R, Conijn, J G, Corbeels, M, Deryng, D, De Sanctis, G, Doltra, J, Fumoto, T, Gaydon, D, Gayler, S, Goldberg, R, Grant, R F, Grassini, P, Hatfield, J L, Hasegawa, T, Heng, L, Hoek, S, Hooker, J, Hunt, L A, Ingwersen, J, Izaurralde, R C, Jongschaap, R E E, Jones, J W, Kemanian, R A, Kersebaum, K C, Kim, S-H, Lizaso, J, Marcaida Ill, M, Müller, C, Nakagawa, H, Naresh Kumar, S, Nendel, C, O'Leary, G J, Olesen, J E, Oriol, P, Osborne, T M, Palosuo, T, Pravia, M V, Priesack, E, Ripoche, D, Rosenzweig, C, Ruane, A C, Ruget, F, Sau, F, Semenov, M A, Shcherbak, I, Singh, B, Singh, U, Soo, H K, Steduto, P, Stöckle, C, Stratonovitch, P, Streck, T, Supit, I, Tang, L, Tao, F, Teixeira, E I, Thorburn, P, Timlin, D, Travasso, M, Rötter, R P, Waha, K, Wallach, D, White, J W, Wilkens, P, Williams, J R, Wolf, J, Yin, X, Yoshida, H, Zhang, Z & Zhu, Y 2015, ' A statistical analysis of three ensembles of crop model responses totemperature and CO 2 concentration ', Agricultural and Forest Meteorology, vol. 214-215, pp. 483-493 . https://doi.org/10.1016/j.agrformet.2015.09.013
- Accession number :
- edsair.doi.dedup.....54a03b1277d6aa60d5a1935620ac44b7
- Full Text :
- https://doi.org/10.1016/j.agrformet.2015.09.013⟩