Fabien Momey, Loic Denis, Catherine Mennessier, Éric Thiébaut, Jean-Marie Becker, Laurent Desbat, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire Hubert Curien / Eris, Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Gestes Medico-chirurgicaux Assistés par Ordinateur (TIMC-IMAG-GMCAO), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Laboratoire Hubert Curien (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)
International audience; Data modelization in tomography is a key point for iterative reconstruction. The design of the projector starts with the representation of the object of interest, decomposed on a discrete basis of functions. Standard models of projector such as ray driven, or more advanced models such as distance driven, use simple cubic voxels, which result in modelization errors due to their anisotropic behaviour. Moreover approximations made at the projection step increase these errors. Long, Fessler and Balter reduce approximation errors by projecting the cubic voxels more accurately. However anisotropy errors still hold. Spherically symmetric volume elements (blobs) eradicate them, but at the cost of increased complexity. We propose a compromise between these two approaches by using B-splines as basis functions. Their quasi-isotropic behaviour allows to avoid projection inconsistencies, while conserving local influence. Small approximations transform the exact footprint (projection of the basis function) into a separable function, which does not depend on the angle of projection, and is easier and faster to integrate on detector pixels. We obtain a more accurate projector, with no additional computation cost. Such an improvement is particularly of interest in the case of dynamic gated X-ray CT, which can be considered as a tomographic reconstruction problem with very few projection data, and for which we show some preliminary results, with an original method of iterative reconstruction, using spatio-temporal regularization of the "space + time" sequence, and making no use of motion estimation.