1. Multi-Attribute Monitoring for Anomaly Detection: a Reinforcement Learning Approach based on Unsupervised Reward
- Author
-
Said Frikha, Mohamed, Mettali Gammar, Sonia, Lahmadi, Abdelkader, Centre de Recherche Réseau Image SysTème Architecture et MuLtimédia (CRISTAL), École Nationale des Sciences de l'Informatique [Manouba] (ENSI), Université de la Manouba [Tunisie] (UMA)-Université de la Manouba [Tunisie] (UMA), Resilience and Elasticity for Security and ScalabiliTy of dynamic networked systems (RESIST), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Networks, Systems and Services (LORIA - NSS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and Lahmadi, Abdelkader
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI] ,[INFO.INFO-NI] Computer Science [cs]/Networking and Internet Architecture [cs.NI] ,Deep Reinforcement Learning ,Internet of Things ,Outlier detection ,Unsupervised Learning ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience; This paper proposes a new method to solve the monitoring and anomaly detection problems of Low-power Internet of Things (IoT) devices. However, their performances are constrained by limited processing, memory, and communication, usually using battery-powered energy. Polling driven mechanisms for monitoring the security, performance, and quality of service of these networks should be efficient and with low overhead, which makes it particularly challenging. The present work proposes the design of a novel method based on a Deep Reinforcement Learning (DRL) algorithm coupled with an Unsupervised Learning reward technique to build a pooling monitoring of IoT networks. This combination makes the network more secure and optimizes predictions of the DRL agent in adaptive environments.
- Published
- 2021