1. Fair Self-Adaptive Clustering for Hybrid Cellular-Vehicular Networks
- Author
-
Ada Diaconescu, Julian Garbiso, Bertrand Leroy, Marceau Coupechoux, Coupechoux, Marceau, Institut VEDECOM, Laboratoire Traitement et Communication de l'Information (LTCI), Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Autonomic and Critical Embedded Systems (ACES), Institut Mines-Télécom [Paris] (IMT)-Télécom Paris-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Département Informatique et Réseaux (INFRES), Télécom ParisTech, Réseaux, Mobilité et Services (RMS), Laboratory of Information, Network and Communication Sciences (LINCS), and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT)-Sorbonne Université (SU)
- Subjects
Computer science ,02 engineering and technology ,Hybrid vehicular networks ,Clustering ,Connected vehicles ,[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI] ,Base station ,0203 mechanical engineering ,0202 electrical engineering, electronic engineering, information engineering ,Network performance ,Intelligent transport systems ,Cluster analysis ,Intelligent transportation system ,Vehicular ad hoc network ,[INFO.INFO-NI] Computer Science [cs]/Networking and Internet Architecture [cs.NI] ,business.industry ,Mechanical Engineering ,020206 networking & telecommunications ,020302 automobile design & engineering ,Uniformization (probability theory) ,Computer Science Applications ,Data aggregator ,LTE ,V2V ,Automotive Engineering ,Cellular network ,Distributive justice ,business ,Computer network - Abstract
International audience; Due to the increasing number of car-centered connected services, making efficient use of limited radio resources is critical in vehicular communications. Hybrid vehicular networks dispose of multiple Radio Access Technologies (RATs) like cellular and vehicle-to-vehicle (V2V) networks, with complementary characteristics that allow for developing smarter network traffic distribution methods. This paper proposes a self-adaptive clustering system for ensuring a suitable trade-off between data aggregation (over the cellular network) and communication congestion due to cluster management (within the V2V network). The systems algorithms use a distributive justice approach for selecting cluster heads, to improve fairness among car drivers and hence help the social acceptability of self-adaptive clustering. Simulation results show that this approach significantly improves fairness over time without affecting network performance. This solution can thus optimize the usage of radio resources, reducing cellular access costs, without the need for uniformization among different mobile operators access plans.
- Published
- 2021