Back to Search Start Over

Fair Self-Adaptive Clustering for Hybrid Cellular-Vehicular Networks

Authors :
Ada Diaconescu
Julian Garbiso
Bertrand Leroy
Marceau Coupechoux
Coupechoux, Marceau
Institut VEDECOM
Laboratoire Traitement et Communication de l'Information (LTCI)
Institut Mines-Télécom [Paris] (IMT)-Télécom Paris
Autonomic and Critical Embedded Systems (ACES)
Institut Mines-Télécom [Paris] (IMT)-Télécom Paris-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris
Département Informatique et Réseaux (INFRES)
Télécom ParisTech
Réseaux, Mobilité et Services (RMS)
Laboratory of Information, Network and Communication Sciences (LINCS)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT)-Sorbonne Université (SU)
Source :
IEEE Transactions on Intelligent Transportation Systems, IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (2), pp.1225-1236, IEEE Transactions on Intelligent Transportation Systems, IEEE, 2021, 22 (2), pp.1225-1236
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Due to the increasing number of car-centered connected services, making efficient use of limited radio resources is critical in vehicular communications. Hybrid vehicular networks dispose of multiple Radio Access Technologies (RATs) like cellular and vehicle-to-vehicle (V2V) networks, with complementary characteristics that allow for developing smarter network traffic distribution methods. This paper proposes a self-adaptive clustering system for ensuring a suitable trade-off between data aggregation (over the cellular network) and communication congestion due to cluster management (within the V2V network). The systems algorithms use a distributive justice approach for selecting cluster heads, to improve fairness among car drivers and hence help the social acceptability of self-adaptive clustering. Simulation results show that this approach significantly improves fairness over time without affecting network performance. This solution can thus optimize the usage of radio resources, reducing cellular access costs, without the need for uniformization among different mobile operators access plans.

Details

Language :
English
ISSN :
15249050
Database :
OpenAIRE
Journal :
IEEE Transactions on Intelligent Transportation Systems, IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (2), pp.1225-1236, IEEE Transactions on Intelligent Transportation Systems, IEEE, 2021, 22 (2), pp.1225-1236
Accession number :
edsair.doi.dedup.....3cc677ad4d5307270a49cc2d76af4a98