1. Cutting-Edge Amalgamation of Web 3.0 and Hybrid Chaotic Blockchain Authentication for Healthcare 4.0.
- Author
-
Kumar, Ajay, Abhishek, Kumar, Khan, Surbhi Bhatia, Alzahrani, Saeed, and Alojail, Mohammed
- Subjects
- *
DATA privacy , *SECURITY systems , *TELECOMMUNICATION systems , *DATA security failures , *PATIENT safety - Abstract
Healthcare 4.0 is considered the most promising technology for gathering data from humans and strongly couples with a communication system for precise clinical and diagnosis performance. Though sensor-driven devices have largely made our everyday lives easier, these technologies have been suffering from various security challenges. Because of data breaches and privacy issues, this heightens the demand for a comprehensive healthcare solution. Since most healthcare data are sensitive and valuable and transferred mostly via the Internet, the safety and confidentiality of patient data remain an important concern. To face the security challenges in Healthcare 4.0, Web 3.0 and blockchain technology have been increasingly deployed to resolve the security breaches due to their immutability and decentralized properties. In this research article, a Web 3.0 ensemble hybrid chaotic blockchain framework is proposed for effective and secure authentication in the Healthcare 4.0 industry. The proposed framework uses the Infura Web API, Web 3.0, hybrid chaotic keys, Ganache interfaces, and MongoDB. To allow for more secure authentication, an ensemble of scroll and Henon maps is deployed to formulate the high dynamic hashes during the formation of genesis blocks, and all of the data are backed in the proposed model. The complete framework was tested in Ethereum blockchain using Web 3.0, in which Python 3.19 is used as the major programming tool for developing the different interfaces. Formal analysis is carried out with Burrows–Abadi–Needham Logic (BAN) to assess the cybersecurity reliability of the suggested framework, and NIST standard tests are used for a thorough review. Furthermore, the robustness of the proposed blockchain is also measured and compared with the other secured blockchain frameworks. Experimental results demonstrate that the proposed model exhibited more defensive characteristics against multiple attacks and outperformed the other models in terms of complexity and robustness. Finally, the paper gives a panoramic view of integrating Web 3.0 with the blockchain and the inevitable directions of a secured authentication framework for Healthcare 4.0. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF