1. Continuum models for meso-scale simulations of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) guided by molecular dynamics: Pore collapse, shear bands, and hotspot temperature.
- Author
-
Nguyen, Yen Thi, Okafor, Chukwudubem, Zhao, Puhan, Sen, Oishik, Picu, Catalin R., Sewell, Tommy, and Udaykumar, H. S.
- Subjects
CHEMICAL kinetics ,MOLECULAR dynamics ,PREDICTION models ,PHYSICS ,DEFORMATIONS (Mechanics) - Abstract
Meso-scale calculations of energy localization and initiation in energetic material microstructures must capture the deformation and collapse of pores and high-temperature shear bands, which lead to hotspots. Because chemical reaction rates depend sensitively on temperature, predictive continuum models need to get the pore-collapse dynamics and resulting hotspot temperatures right; this imposes stringent demands on the fidelity of thermophysical model forms and parameters and on the numerical methods employed to perform high-resolution meso-scale calculations. Here, continuum material models for β-HMX are examined in the context of shock-induced pore collapse, treating predictions from all-atom molecular dynamics (MD) simulations as ground truth. Using atomistics-consistent material properties, we show that the currently available strength models for HMX fail to correctly capture pore collapse and hotspot temperatures. Insights from MD are then employed to advance a Modified Johnson–Cook (M-JC) strength model, which is shown to capture key aspects of the physics of shock-induced localization in HMX. The study culminates in a MD-guided strength model for β-HMX that produces continuum pore-collapse results in better alignment on several aspects with those predicted by MD, including pore-collapse mechanism and rate, shear-band formation in the collapse zone, and temperature, strain, and stress fields in the hotspot zone and the surrounding material. The resulting MD-informed/MD-determined M-JC model should improve the fidelity of meso-scale simulations to predict the detonation initiation of HMX-based energetic materials in microstructure-aware multi-scale frameworks. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF