Back to Search Start Over

Molecular dynamics-guided material model for the simulation of shock-induced pore collapse in β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX).

Authors :
Das, Pratik
Zhao, Puhan
Perera, Dilki
Sewell, Tommy
Udaykumar, H. S.
Source :
Journal of Applied Physics; 8/28/2021, Vol. 130 Issue 8, p1-25, 25p
Publication Year :
2021

Abstract

Material models for single-crystal β-HMX are systematically examined in the context of continuum pore-collapse simulations. Continuum predictions using five different isotropic material models are compared head-to-head with molecular dynamics (MD) predictions for a 50 nm cylindrical pore in β-HMX subject to a range of shock strengths. Shock waves were generated using a reverse-ballistic configuration, propagating along [010] in the MD simulations. The continuum models are improved hierarchically, drawing on temperature- and pressure-dependent MD-derived material parameters. This procedure reveals the sensitivity of the continuum predictions of pore collapse to the underlying thermophysical models. The study culminates in an MD-calibrated isotropic rate- and temperature-dependent strength model, which includes appropriate submodels for the temperature-dependent melting point of β-HMX [M. P. Kroonblawd and R. A. Austin, Mech. Mater. 152, 103644 (2021)], pressure-dependent shear modulus [A. Pereverzev and T. Sewell, Crystals 10, 1123 (2020)], and temperature-dependent specific heat, that produces continuum pore-collapse results similar to those predicted by MD. The resulting MD-informed model should improve the fidelity of simulations to predict the detonation initiation of HMX-based energetic materials containing micrometer-scale pores. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
130
Issue :
8
Database :
Complementary Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
152214060
Full Text :
https://doi.org/10.1063/5.0056560