1. 7D, a small molecule inhibits dengue infection by increasing interferons and neutralizing-antibodies via CXCL4:CXCR3:p38:IRF3 and Sirt1:STAT3 axes respectively.
- Author
-
Gaur, Kishan Kumar, Asuru, Tejeswara Rao, Srivastava, Mitul, Singh, Nitu, Purushotham, Nikil, Poojary, Boja, Das, Bhabatosh, Bhattacharyya, Sankar, Asthana, Shailendra, and Guchhait, Prasenjit
- Abstract
There are a limited number of effective vaccines against dengue virus (DENV) and significant efforts are being made to develop potent anti-virals. Previously, we described that platelet-chemokine CXCL4 negatively regulates interferon (IFN)-α/β synthesis and promotes DENV2 replication. An antagonist to CXCR3 (CXCL4 receptor) reversed it and inhibited viral replication. In a concurrent search, we identified CXCR3-antagonist from our compound library, namely 7D, which inhibited all serotypes of DENV in vitro. With a half-life of ~2.85 h in plasma and no significant toxicity, 7D supplementation (8 mg/kg-body-weight) to DENV2-infected IFNα/β/γR
−/− AG129 or wild-type C57BL6 mice increased synthesis of IFN-α/β and IFN-λ, and rescued disease symptoms like thrombocytopenia, leukopenia and vascular-leakage, with improved survival. 7D, having the property to inhibit Sirt-1 deacetylase, promoted acetylation and phosphorylation of STAT3, which in-turn increased plasmablast proliferation, germinal-center maturation and synthesis of neutralizing-antibodies against DENV2 in mice. A STAT3-inhibitor successfully inhibited these effects of 7D. Together, these observations identify compound 7D as a stimulator of IFN-α/β/λ synthesis via CXCL4:CXCR3:p38:IRF3 signaling, and a booster for neutralizing-antibody generation by promoting STAT3-acetylation in plasmablasts, capable of protecting dengue infection. Synopsis: Effective vaccines and anti-viral drugs against dengue are limited. Our study identifies a small molecule, namely 7D as a stimulator of IFNα/β/λ synthesis, and also booster for neutralizing-antibody generation, capable of protecting dengue infection in 3 different mice models. Schematic describes the CXCL4-mediated activation of CXCR3:p38:IRF3 signaling, in turn suppression of IRF3 phosphorylation and IFNα/β/λ synthesis in monocytes and macrophages. Conversely, 7D supplementation reverses the above signaling and improves IFNα/β/λ synthesis. Besides, 7D increases acetylation and phosphorylation of STAT3, in turn promotes proliferation of plasmablasts and plasma cells, in turn increases IgG synthesis via suppression of deacetylase activity of Sirt-1. 7D is a potent anti-viral drug against dengue. Effective vaccines and anti-viral drugs against dengue are limited. Our study identifies a small molecule, namely 7D as a stimulator of IFNα/β/λ synthesis, and also booster for neutralizing-antibody generation, capable of protecting dengue infection in 3 different mice models. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF