82 results on '"Sébastien Mongrand"'
Search Results
2. StREM1.3 REMORIN Protein Plays an Agonistic Role in Potyvirus Cell-to-Cell Movement in N. benthamiana
- Author
-
Marion Rocher, Vincent Simon, Marie-Dominique Jolivet, Luc Sofer, Anne-Flore Deroubaix, Véronique Germain, Sébastien Mongrand, and Sylvie German-Retana
- Subjects
REMORIN ,StREM1.3 ,Nicotiana benthamiana ,potyvirus ,TuMV ,PVA ,Microbiology ,QR1-502 - Abstract
REMORIN proteins belong to a plant-specific multigene family that localise in plasma membrane nanodomains and in plasmodesmata. We previously showed that in Nicotiana benthamiana, group 1 StREM1.3 limits the cell-to-cell spread of a potexvirus without affecting viral replication. This prompted us to check whether an effect on viral propagation could apply to potyvirus species Turnip mosaic virus (TuMV) and Potato virus A (PVA). Our results show that StREM1.3 transient or stable overexpression in transgenic lines increases potyvirus propagation, while it is slowed down in transgenic lines underexpressing endogenous NbREMs, without affecting viral replication. TuMV and PVA infection do not alter the membranous localisation of StREM1.3. Furthermore, StREM1.3-membrane anchoring is necessary for its agonist effect on potyvirus propagation. StREM1.3 phosphocode seems to lead to distinct plant responses against potexvirus and potyvirus. We also showed that StREM1.3 interacts in yeast and in planta with the key potyviral movement protein CI (cylindrical inclusion) at the level of the plasma membrane but only partially at plasmodesmata pit fields. TuMV infection also counteracts StREM1.3-induced plasmodesmata callose accumulation at plasmodesmata. Altogether, these results showed that StREM1.3 plays an agonistic role in potyvirus cell-to-cell movement in N. benthamiana.
- Published
- 2022
- Full Text
- View/download PDF
3. Nanodomain Clustering of the Plant Protein Remorin by Solid-State NMR
- Author
-
Anthony Legrand, Denis Martinez, Axelle Grélard, Melanie Berbon, Estelle Morvan, Arpita Tawani, Antoine Loquet, Sébastien Mongrand, and Birgit Habenstein
- Subjects
nanodomains ,lipid raft ,solid-state NMR ,membrane protein ,plant protein ,phosphoinositide ,Biology (General) ,QH301-705.5 - Abstract
Nanodomains are dynamic membrane subcompartments, enriched in specific lipid, and protein components that act as functional platforms to manage an abundance of cellular processes. The remorin protein of plants is a well-established nanodomain marker and widely serves as a paradigm to study nanodomain clustering. Located at the inner leaflet of the plasma membrane, remorins perform essential functions during signaling. Using deuterium and phosphorus solid-state NMR, we inquire on the molecular determinants of the lipid-protein and protein-protein interactions driving nanodomain clustering. By monitoring thermotropism properties, lipid acyl chain order and membrane thickness, we report the effects of phosphoinositides and sterols on the interaction of various remorin peptides and protein constructs with the membrane. We probed several critical residues involved in this interaction and the involvement of the coiled-coil homo-oligomerisation domain into the formation of remorin nanodomains. We trace the essential role of the pH in nanodomain clustering based on anionic lipids such as phosphoinositides. Our results reveal a complex interplay between specific remorin residues and domains, the environmental pH and their resulting effects on the lipid dynamics for phosphoinositide-enriched membranes.
- Published
- 2019
- Full Text
- View/download PDF
4. Biosynthesis and Functions of Very-Long-Chain Fatty Acids in the Responses of Plants to Abiotic and Biotic Stresses
- Author
-
Marguerite Batsale, Delphine Bahammou, Laetitia Fouillen, Sébastien Mongrand, Jérôme Joubès, and Frédéric Domergue
- Subjects
very-long-chain fatty acids ,surface lipids ,sphingolipids ,elongation complex ,stress response ,Arabidopsis ,Cytology ,QH573-671 - Abstract
Very-long-chain fatty acids (i.e., fatty acids with more than 18 carbon atoms; VLCFA) are important molecules that play crucial physiological and structural roles in plants. VLCFA are specifically present in several membrane lipids and essential for membrane homeostasis. Their specific accumulation in the sphingolipids of the plasma membrane outer leaflet is of primordial importance for its correct functioning in intercellular communication. VLCFA are found in phospholipids, notably in phosphatidylserine and phosphatidylethanolamine, where they could play a role in membrane domain organization and interleaflet coupling. In epidermal cells, VLCFA are precursors of the cuticular waxes of the plant cuticle, which are of primary importance for many interactions of the plant with its surrounding environment. VLCFA are also major components of the root suberin barrier, which has been shown to be fundamental for nutrient homeostasis and plant adaptation to adverse conditions. Finally, some plants store VLCFA in the triacylglycerols of their seeds so that they later play a pivotal role in seed germination. In this review, taking advantage of the many studies conducted using Arabidopsis thaliana as a model, we present our current knowledge on the biosynthesis and regulation of VLCFA in plants, and on the various functions that VLCFA and their derivatives play in the interactions of plants with their abiotic and biotic environment.
- Published
- 2021
- Full Text
- View/download PDF
5. Enrichment of hydroxylated C24- and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains
- Author
-
Valérie Wattelet-Boyer, Lysiane Brocard, Kristoffer Jonsson, Nicolas Esnay, Jérôme Joubès, Frédéric Domergue, Sébastien Mongrand, Natasha Raikhel, Rishikesh P. Bhalerao, Patrick Moreau, and Yohann Boutté
- Subjects
Science - Abstract
Sphingolipids in the trans-Golgi network have been implicated in polar trafficking. Here Wattelet-Boyer et al. show that hydroxylated C24- and C26-acyl-chain sphingolipids are enriched in trans-Golgi network subdomains that are critical for polar sorting of the PIN2 auxin carrier in plant cells.
- Published
- 2016
- Full Text
- View/download PDF
6. REM1.3's phospho-status defines its plasma membrane nanodomain organization and activity in restricting PVX cell-to-cell movement.
- Author
-
Artemis Perraki, Julien Gronnier, Paul Gouguet, Marie Boudsocq, Anne-Flore Deroubaix, Vincent Simon, Sylvie German-Retana, Anthony Legrand, Birgit Habenstein, Cyril Zipfel, Emmanuelle Bayer, Sébastien Mongrand, and Véronique Germain
- Subjects
Immunologic diseases. Allergy ,RC581-607 ,Biology (General) ,QH301-705.5 - Abstract
Plants respond to pathogens through dynamic regulation of plasma membrane-bound signaling pathways. To date, how the plant plasma membrane is involved in responses to viruses is mostly unknown. Here, we show that plant cells sense the Potato virus X (PVX) COAT PROTEIN and TRIPLE GENE BLOCK 1 proteins and subsequently trigger the activation of a membrane-bound calcium-dependent kinase. We show that the Arabidopsis thaliana CALCIUM-DEPENDENT PROTEIN KINASE 3-interacts with group 1 REMORINs in vivo, phosphorylates the intrinsically disordered N-terminal domain of the Group 1 REMORIN REM1.3, and restricts PVX cell-to-cell movement. REM1.3's phospho-status defines its plasma membrane nanodomain organization and is crucial for REM1.3-dependent restriction of PVX cell-to-cell movement by regulation of callose deposition at plasmodesmata. This study unveils plasma membrane nanodomain-associated molecular events underlying the plant immune response to viruses.
- Published
- 2018
- Full Text
- View/download PDF
7. Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains
- Author
-
Julien Gronnier, Jean-Marc Crowet, Birgit Habenstein, Mehmet Nail Nasir, Vincent Bayle, Eric Hosy, Matthieu Pierre Platre, Paul Gouguet, Sylvain Raffaele, Denis Martinez, Axelle Grelard, Antoine Loquet, Françoise Simon-Plas, Patricia Gerbeau-Pissot, Christophe Der, Emmanuelle M Bayer, Yvon Jaillais, Magali Deleu, Véronique Germain, Laurence Lins, and Sébastien Mongrand
- Subjects
Nicotiana benthamiana ,Membrane domain ,targeting ,phospholipids ,sterols ,membrane structure ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Plasma Membrane is the primary structure for adjusting to ever changing conditions. PM sub-compartmentalization in domains is thought to orchestrate signaling. Yet, mechanisms governing membrane organization are mostly uncharacterized. The plant-specific REMORINs are proteins regulating hormonal crosstalk and host invasion. REMs are the best-characterized nanodomain markers via an uncharacterized moiety called REMORIN C-terminal Anchor. By coupling biophysical methods, super-resolution microscopy and physiology, we decipher an original mechanism regulating the dynamic and organization of nanodomains. We showed that targeting of REMORINis independent of the COP-II-dependent secretory pathway and mediated by PI4P and sterol. REM-CA is an unconventional lipid-binding motif that confers nanodomain organization. Analyzes of REM-CA mutants by single particle tracking demonstrate that mobility and supramolecular organization are critical for immunity. This study provides a unique mechanistic insight into how the tight control of spatial segregation is critical in the definition of PM domain necessary to support biological function.
- Published
- 2017
- Full Text
- View/download PDF
8. Sphingolipids are involved in insect egg-induced cell death in Arabidopsis
- Author
-
Raphaël Groux, Laetitia Fouillen, Sébastien Mongrand, and Philippe Reymond
- Subjects
Sphingolipids ,Cell Death ,Arabidopsis Proteins ,Gene Expression Regulation, Plant ,Physiology ,Animals ,Arabidopsis/metabolism ,Arabidopsis Proteins/genetics ,Arabidopsis Proteins/metabolism ,Butterflies/metabolism ,Salicylic Acid/metabolism ,Salicylic Acid/pharmacology ,Sphingolipids/metabolism ,Arabidopsis ,Genetics ,Plant Science ,Salicylic Acid ,Butterflies ,Research Articles - Abstract
In Brassicaceae, hypersensitive-like programmed cell death (HR-like) is a central component of direct defenses triggered against eggs of the large white butterfly (Pieris brassicae). The signaling pathway leading to HR-like in Arabidopsis (Arabidopsis thaliana) is mainly dependent on salicylic acid (SA) accumulation, but downstream components are unclear. Here, we found that treatment with P. brassicae egg extract (EE) triggered changes in expression of sphingolipid metabolism genes in Arabidopsis and black mustard (Brassica nigra). Disruption of ceramide (Cer) synthase activity led to a significant decrease of EE-induced HR-like whereas SA signaling and reactive oxygen species levels were unchanged, suggesting that Cer are downstream activators of HR-like. Sphingolipid quantifications showed that Cer with C16:0 side chains accumulated in both plant species and this response was largely unchanged in the SA-induction deficient2 (sid2-1) mutant. Finally, we provide genetic evidence that the modification of fatty acyl chains of sphingolipids modulates HR-like. Altogether, these results show that sphingolipids play a key and specific role during insect egg-triggered HR-like.
- Published
- 2022
9. Cytotoxic activity of Nep1‐like proteins on monocots
- Author
-
Maikel B. F. Steentjes, Andrea L. Herrera Valderrama, Laetitia Fouillen, Delphine Bahammou, Thomas Leisen, Isabell Albert, Thorsten Nürnberger, Matthias Hahn, Sébastien Mongrand, Olga E. Scholten, and Jan A. L. van Kan
- Subjects
sphingolipids ,Physiology ,Nep1-like protein ,phytotoxic protein ,fungi ,Proteins ,food and beverages ,Botrytis squamosa ,Plant Science ,Plants ,GIPC ,Laboratorium voor Phytopathologie ,Plant Leaves ,Plant Breeding ,Laboratory of Phytopathology ,onion (Allium cepa) ,EPS ,Peptides ,cytotoxic activity - Abstract
Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are found throughout several plant-associated microbial taxa and are typically considered to possess cytolytic activity exclusively on dicot plant species. However, cytolytic NLPs are also produced by pathogens of monocot plants such as the onion (Allium cepa) pathogen Botrytis squamosa. We determined the cytotoxic activity of B. squamosa BsNep1, as well as other previously characterized NLPs, on various monocot plant species and assessed the plant plasma membrane components required for NLP sensitivity. Leaf infiltration of NLPs showed that onion cultivars are differentially sensitive to NLPs, and analysis of their sphingolipid content revealed that the GIPC series A : series B ratio did not correlate to NLP sensitivity. A tri-hybrid population derived from a cross between onion and two wild relatives showed variation in NLP sensitivity within the population. We identified a quantitative trait locus (QTL) for NLP insensitivity that colocalized with a previously identified QTL for B. squamosa resistance and the segregating trait of NLP insensitivity correlated with the sphingolipid content. Our results demonstrate the cytotoxic activity of NLPs on several monocot plant species and legitimize their presence in monocot-specific plant pathogens.
- Published
- 2022
10. Structural determinants of REMORIN nanodomain formation in anionic membranes
- Author
-
Anthony Legrand, Daniel G. Cava, Marie-Dominique Jolivet, Marion Decossas, Olivier Lambert, Vincent Bayle, Yvon Jaillais, Antoine Loquet, Véronique Germain, Marie Boudsocq, Birgit Habenstein, Marisela Vélez, Sébastien Mongrand, Laboratoire de biogenèse membranaire (LBM), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Instituto de Catálisis y Petroleoquímica (ICP), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Chimie et Biologie des Membranes et des Nanoobjets (CBMN), Université de Bordeaux (UB)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Reproduction et développement des plantes (RDP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), and Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
Biophysics ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology - Abstract
Remorins are a family of multigenic phosphoproteins of the plasma membrane, involved in biotic and abiotic plant interaction mechanisms, partnering in molecular signaling cascades. Signaling activity of remorins depends on their phosphorylation states and subsequent clustering into nano-sized membrane domains. The presence of a coiled-coil domain and a C-terminal domain is crucial to anchor remorins to negatively charged membrane domains, however the exact role of the N-terminal intrinsically disordered domain (IDD) on protein clustering and lipid interactions is largely unknown. Here we combine chemical biology and imaging approaches to study the partitioning of group 1 remorin into anionic model membranes mimicking the inner leaflet of the plant plasma membrane. Using reconstituted membranes containing a mix of saturated and unsaturated PhosphatidylCholine (PC), PhosphatidylInositol Phosphates (PIPs), and sterol, we investigate the clustering of remorins to the membrane and monitor the formation of nano-sized membrane domains. REM1.3 promoted membrane nanodomain organization on the exposed external leaflet of both spherical lipid vesicles and flat supported lipid bilayers. Our results reveal that REM1.3 drives a mechanism allowing lipid reorganization, leading to the formation of remorin-enriched nanodomains. Phosphorylation of the N-terminal IDD by the calcium protein kinase CPK3 influences this clustering and can lead to the formation of smaller and more disperse domains. Our work reveals the phosphate-dependent involvement of the N-terminal IDD in the remorin-membrane interaction process by driving structural rearrangements at lipid-water interfaces.Summary headingUsing reconstituted membranes, we demonstrated the clustering of the plant protein remorins StREM1.3 to the lipid bilayer external leaflet and monitor the formation of nanodomains of the protein.
- Published
- 2023
11. Impact of membrane lipid polyunsaturation on dopamine D2 receptor ligand binding and signaling
- Author
-
Marie-Lise Jobin, Véronique De Smedt-Peyrusse, Fabien Ducrocq, Asma Oummadi, Rim Baccouch, Maria Hauge Pedersen, Brian Medel-Lacruz, Pierre Van Delft, Laetitia Fouillen, Sébastien Mongrand, Jana Selent, Tarson Tolentino-Cortez, Gabriel Barreda-Gómez, Stéphane Grégoire, Elodie Masson, Thierry Durroux, Jonathan A. Javitch, Ramon Guixà-González, Isabel D. Alves, Pierre Trifilieff, Interdisciplinary Institute for Neuroscience [Bordeaux] (IINS), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Nutrition et Neurobiologie intégrée (NutriNeuro), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Ecole nationale supérieure de chimie, biologie et physique-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Chimie et Biologie des Membranes et des Nanoobjets (CBMN), Université de Bordeaux (UB)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre interdisciplinaire du Graben ' GRIG ', Université de Lille, Sciences Humaines et Sociales, Laboratoire de biogenèse membranaire (LBM), Research Unit on Biomedical Informatics (GRIB), Universitat Pompeu Fabra [Barcelona] (UPF), IMG Pharma Biotech S.L., Partenaires INRAE, Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Dijon, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut de Génomique Fonctionnelle (IGF), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Paul Scherrer Institute (PSI), and Alves, Isabel
- Subjects
[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,lipids (amino acids, peptides, and proteins) - Abstract
The heterogenous and dynamic constitution of the membrane fine-tunes signal transduction. In particular, the polyunsaturated fatty acid (PUFA) tails of phospholipids influence the biophysical properties of the membrane, production of second messengers, or membrane partitioning. Few evidence mostly originating from studies of rhodopsin suggest that PUFAs directly modulate the conformational dynamic of transmembrane proteins. However, whether such properties translate to other G protein-coupled receptors remains unclear. We focused on the dopamine D2 receptor (D2R), a main target of antipsychotics. Membrane enrichment in n-3, but not n-6, PUFAs potentiates ligand binding. Molecular dynamics simulations show that the D2R preferentially interacts with n-3 over n-6 PUFAs. Furthermore, even though this mildly affects signalling in heterologous systems, in vivo n-3 PUFA deficiency blunts the effects of D2R ligands. These results suggest that n-3 PUFAs act as allosteric modulators of the D2R and provide a putative mechanism for their potentiating effect on antipsychotic efficacy.
- Published
- 2022
12. Dynamic membranes-the indispensable platform for plant growth, signaling, and development
- Author
-
Sébastien Mongrand, Michael R. Blatt, Viktor Zarsky, Teun Munnik, and Plant Cell Biology (SILS, FNWI)
- Subjects
Plant growth ,Membrane ,Plant Growth Regulators ,Physiology ,Chemistry ,Cell Membrane ,Genetics ,Focus Issue on Dynamic Membranes ,Plant Development ,Plant Science ,Computational biology ,Biological Phenomena ,Signal Transduction - Published
- 2021
13. Sphingolipids are involved in Pieris brassicae egg-induced cell death in Arabidopsis thaliana
- Author
-
Philippe Reymond, Laetitia Fouillen, Sébastien Mongrand, and Raphaël Groux
- Subjects
chemistry.chemical_classification ,Reactive oxygen species ,Programmed cell death ,Pieris brassicae ,biology ,biology.organism_classification ,Sphingolipid ,Cell biology ,chemistry.chemical_compound ,chemistry ,Arabidopsis ,Arabidopsis thaliana ,Signal transduction ,Salicylic acid - Abstract
In Brassicaceae, hypersensitive-like (HR-like) cell death is a central component of direct defenses triggered against eggs of the large white butterfly Pieris brassicae. The signaling pathway leading to HR-like in Arabidopsis is mainly dependent on salicylic acid (SA) accumulation, but downstream components are unclear. Here, we found that treatment with P. brassicae egg extract (EE) trigger changes in expression of sphingolipid metabolism genes in Arabidopsis and Brassica nigra. Disruption of ceramide synthase activity led to a significant decrease of EE-induced HR-like whereas SA signaling and reactive oxygen species levels were unchanged, suggesting that ceramides are downstream activators of HR-like. Sphingolipid quantifications showed that ceramides with C16:0 side-chains accumulated in both species, and this response was independent on SA accumulation. Finally, we provide genetic evidence that the modification of fatty acyl chains of sphingolipids modulates HR-like. Altogether, these results show that sphingolipids play a key and specific role during insect egg-triggered HR-like.
- Published
- 2021
14. Reduced light access promotes hypocotyl growth via autophagy-mediated recycling
- Author
-
Laetitia Fouillen, Sébastien Mongrand, Pierre van Delft, Johanna Krahmer, Christian Fankhauser, Hector Gallart-Ayala, Anne-Sophie Fiorucci, Sylvain Pradervand, Vinicius Costa Galvão, Leonore Wigger, Martine Trevisan, Yetkin Çaka Ince, and Julijana Ivanisevic
- Subjects
Anabolism ,biology ,Catabolism ,fungi ,Autophagy ,food and beverages ,Photosynthesis ,biology.organism_classification ,Cell biology ,Hypocotyl ,chemistry.chemical_compound ,Available light ,Biosynthesis ,chemistry ,Arabidopsis - Abstract
SUMMARYPlant growth ultimately depends on fixed carbon, thus the available light for photosynthesis. Due to canopy light absorption properties, vegetative shade combines reduced light and a low red to far-red ratio (LRFR). In shade-avoiding plants, these two conditions independently promote growth adaptations to enhance light access. However, how these conditions, differing in photosynthetically-available light, similarly promote growth remains unknown. Here, we show that Arabidopsis seedlings adjust metabolism according to light conditions to supply resources for hypocotyl growth enhancement. Transcriptome analyses indicate that reduced light induces starvation responses, suggesting a switch to a catabolic state to promote growth. Accordingly, reduced light promotes autophagy. In contrast, LRFR promotes anabolism including biosynthesis of plasma-membrane sterols downstream of PHYTOCHROME-INTERACTING FACTORs (PIFs) acting in hypocotyls. Furthermore, sterol biosynthesis and autophagy are indispensable for shade-induced hypocotyl growth. We conclude that vegetative shade enhances hypocotyl growth by combining autophagy-mediated recycling and promotion of specific anabolic processes.HIGHLIGHTSReduced light and LRFR induce catabolism and anabolism, respectivelyReduced light promotes autophagy to enhance hypocotyl growth in vegetative shadeLRFR enhances hypocotyl growth by promoting plasma membrane lipid biosynthesisIn LRFR, PIFs promote sterol biosynthesis specifically in the hypocotyl
- Published
- 2021
15. Biosynthesis and Functions of Very-Long-Chain Fatty Acids in the Responses of Plants to Abiotic and Biotic Stresses
- Author
-
Laetitia Fouillen, Marguerite Batsale, Frédéric Domergue, Jérôme Joubès, Sébastien Mongrand, Delphine Bahammou, Laboratoire de biogenèse membranaire (LBM), and Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,0301 basic medicine ,congenital, hereditary, and neonatal diseases and abnormalities ,endocrine system diseases ,QH301-705.5 ,Membrane lipids ,[SDV]Life Sciences [q-bio] ,Arabidopsis ,Review ,01 natural sciences ,03 medical and health sciences ,chemistry.chemical_compound ,Biosynthesis ,Suberin ,Gene Expression Regulation, Plant ,Stress, Physiological ,Arabidopsis thaliana ,very-long-chain fatty acids ,Biology (General) ,Phosphatidylethanolamine ,surface lipids ,sphingolipids ,biology ,Arabidopsis Proteins ,Fatty Acids ,fungi ,nutritional and metabolic diseases ,food and beverages ,General Medicine ,stress response ,biology.organism_classification ,Sphingolipid ,030104 developmental biology ,Plant cuticle ,chemistry ,Biochemistry ,elongation complex ,010606 plant biology & botany - Abstract
International audience; Very-long-chain fatty acids (i.e., fatty acids with more than 18 carbon atoms; VLCFA) are important molecules that play crucial physiological and structural roles in plants. VLCFA are specifically present in several membrane lipids and essential for membrane homeostasis. Their specific accumulation in the sphingolipids of the plasma membrane outer leaflet is of primordial importance for its correct functioning in intercellular communication. VLCFA are found in phospholipids, notably in phosphatidylserine and phosphatidylethanolamine, where they could play a role in membrane domain organization and interleaflet coupling. In epidermal cells, VLCFA are precursors of the cuticular waxes of the plant cuticle, which are of primary importance for many interactions of the plant with its surrounding environment. VLCFA are also major components of the root suberin barrier, which has been shown to be fundamental for nutrient homeostasis and plant adaptation to adverse conditions. Finally, some plants store VLCFA in the triacylglycerols of their seeds so that they later play a pivotal role in seed germination. In this review, taking advantage of the many studies conducted using Arabidopsis thaliana as a model, we present our current knowledge on the biosynthesis and regulation of VLCFA in plants, and on the various functions that VLCFA and their derivatives play in the interactions of plants with their abiotic and biotic environment.
- Published
- 2021
16. Plant lipids: Key players of plasma membrane organization and function
- Author
-
Nelson Laurent, Adiilah Mamode Cassim, Paul Gouguet, Magali S. Grison, Patricia Gerbeau-Pissot, Sébastien Mongrand, Yohann Boutté, Julien Gronnier, Véronique Germain, Françoise Simon-Plas, Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Agroécologie [Dijon], Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC), UMR 5200 Membrane Biogenesis Laboratory, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, and Université de Bourgogne (UB)-Institut National de la Recherche Agronomique (INRA)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement
- Subjects
0106 biological sciences ,0301 basic medicine ,Detergent ,Model membrane ,[SDV]Life Sciences [q-bio] ,Biophysics ,Membrane biology ,Plasmodesma ,Computational biology ,Biology ,01 natural sciences ,Biochemistry ,03 medical and health sciences ,Membrane Microdomains ,Stress, Physiological ,Plant Cells ,Interdigitation ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Microdomain ,Hormone signaling ,Phospholipids ,Raft ,ComputingMilieux_MISCELLANEOUS ,Sphingolipids ,Plasma membrane organization ,Host Microbial Interactions ,Abiotic stress ,Cell Membrane ,fungi ,Lipid microdomain ,Plasmodesmata ,Membrane Proteins ,Phytosterols ,food and beverages ,Biological membrane ,Plant ,Cell Biology ,Signaling ,Liposome ,Interleaflet registration ,Sterols ,030104 developmental biology ,Nanodomain ,Pinning ,Function (biology) ,Plasma membrane ,010606 plant biology & botany - Abstract
International audience; The plasma membrane (PM) is the biological membrane that separates the interior of all cells from the outside. The PM is constituted of a huge diversity of proteins and lipids. In this review, we will update the diversity of molecular species of lipids found in plant PM. We will further discuss how lipids govern global properties of the plant PM, explaining that plant lipids are unevenly distributed and are able to organize PM in domains. From that observation, it emerges a complex picture showing a spatial and multiscale segregation of PM components. Finally, we will discuss how lipids are key players in the function of PM in plants, with a particular focus on plant-microbe interaction, transport and hormone signaling, abiotic stress responses, plasmodesmata function. The last chapter is dedicated to the methods that the plant membrane biology community needs to develop to get a comprehensive understanding of membrane organization in plants.
- Published
- 2019
17. A hetero-oligomeric remorin-receptor complex regulates plant development
- Author
-
Birgit Kemmerling, Karl Heinz Braun, Anne-Flore Deroubaix, Julien Gronnier, Julia Mergner, Véronique Germain, Corinna A. Buschle, Paul Derbyshire, Sandy S. Burkart, Bernhard Kuester, Sébastien Mongrand, Jessica Folgmann, Macarena Marín, Frank L.H. Menke, Casandra Hernandez-Ryes, Nikolaj B. Abel, Iris K. Jarsch, Emmanuelle Bayer, Thomas Ott, and Cyril Zipfel
- Subjects
Scaffold protein ,Plant development ,Receptor complex ,Membrane ,Kinase ,Abiotic stress ,Chemistry ,Receptor ,Phenotype ,Cell biology - Abstract
Plant growth and development are modulated by both biotic and abiotic stress. Increasing evidence suggests that cellular integration of the corresponding signals occurs within preformed hubs at the plasma membrane called nanodomains. These membrane sub-compartments are organized by multivalent molecular scaffold proteins, such as remorins. Here, we demonstrate that Group 1 remorins form a hetero-oligomeric complex at the plasma membrane. While these remorins are functionally redundant for some pathways their multivalency also allows the recruitment of specific interaction partners. One of them, the receptor-like kinase REMORIN-INTERACTING RECEPTOR 1 (RIR1), that acts redundantly with the closely related receptor NILR2, is specifically recruited by REM1.2 in a phosphorylation-dependent manner. Overlapping developmental phenotypes suggest that the REM/RIR complex regulates key developmental pathways.
- Published
- 2021
18. A nanodomain-anchored scaffolding complex is required for the function and localization of phosphatidylinositol 4-kinase alpha in plants
- Author
-
Yvon Jaillais, Floris D Stevens, Lise C Noack, Teun Munnik, Adiilah Mamode-Cassim, Frédérique Rozier, Marie-Cécile Caillaud, Roman Pleskot, Vincent Bayle, Sébastien Mongrand, Laia Armengot, Reproduction et développement des plantes (RDP), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Swammerdam Institute for Life Sciences (SILS), University of Amsterdam [Amsterdam] (UvA), Institute of Experimental Botany of the Czech Academy of Sciences (IEB / CAS), Czech Academy of Sciences [Prague] (CAS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Agroécologie [Dijon], Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), ANR-18-CE13-0025,caLIPSO,Mécanismes du pattern lipidique du réseau trans-Golgien (trans-Golgi Network) et rôles dans le tri des protéines, la polarité cellulaire et le développement des plantes(2018), ANR-19-CE20-0016,PLAYMOBIL,Vers un modèle intégratif de la bicouche lipidique de la membrane plasmique végétale(2019), ANR-19-CE13-0021,PhosphoREM-domain,Régulation de la communication intercellulaire - le rôle de la phosphoprotéine REMORIN liée aux nanodomaines de la membrane plasmique(2019), Molecular Plant Pathology (SILS, FNWI), and Plant Cell Biology (SILS, FNWI)
- Subjects
0106 biological sciences ,0301 basic medicine ,Scaffold ,AcademicSubjects/SCI01280 ,Plant Science ,Biology ,01 natural sciences ,03 medical and health sciences ,chemistry.chemical_compound ,Arabidopsis thaliana ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Phosphatidylinositol ,Research Articles ,AcademicSubjects/SCI01270 ,AcademicSubjects/SCI02288 ,Kinase ,AcademicSubjects/SCI02287 ,AcademicSubjects/SCI02286 ,Cell Biology ,Compartment (chemistry) ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,biology.organism_classification ,Embryonic stem cell ,Focus on Cell Biology ,3. Good health ,Cell biology ,030104 developmental biology ,Membrane ,chemistry ,Function (biology) ,010606 plant biology & botany - Abstract
Phosphoinositides are low-abundant lipids that participate in the acquisition of membrane identity through their spatiotemporal enrichment in specific compartments. Phosphatidylinositol 4-phosphate (PI4P) accumulates at the plant plasma membrane driving its high electrostatic potential, and thereby facilitating interactions with polybasic regions of proteins. PI4Kα1 has been suggested to produce PI4P at the plasma membrane, but how it is recruited to this compartment is unknown. Here, we pin-point the mechanism that tethers Arabidopsis thaliana phosphatidylinositol 4-kinase alpha1 (PI4Kα1) to the plasma membrane via a nanodomain-anchored scaffolding complex. We established that PI4Kα1 is part of a complex composed of proteins from the NO-POLLEN-GERMINATION, EFR3-OF-PLANTS, and HYCCIN-CONTAINING families. Comprehensive knockout and knockdown strategies revealed that subunits of the PI4Kα1 complex are essential for pollen, embryonic, and post-embryonic development. We further found that the PI4Kα1 complex is immobilized in plasma membrane nanodomains. Using synthetic mis-targeting strategies, we demonstrate that a combination of lipid anchoring and scaffolding localizes PI4Kα1 to the plasma membrane, which is essential for its function. Together, this work opens perspectives on the mechanisms and function of plasma membrane nanopatterning by lipid kinases., PI4Kα1 is targeted to plasma membrane nanodomains by a lipid-anchored heterotetrameric complex essential for plant cell survival, including gametophytic, embryonic, and post-embryonic development.
- Published
- 2021
19. A nanodomain anchored-scaffolding complex is required for PI4Kα function and localization in plants
- Author
-
Vincent Bayle, Adiilah Mamode-Cassim, Lise C Noack, Floris D Stevens, Frédérique Rozier, Teun Munnik, Marie-Cécile Caillaud, Yvon Jaillais, Laia Armengot, and Sébastien Mongrand
- Subjects
Scaffold ,Membrane ,Chemistry ,Lipid kinases ,Biophysics ,Compartment (development) ,Function (biology) - Abstract
Phosphoinositides are low-abundant lipids that participate in the acquisition of membrane identity through their spatiotemporal enrichment in specific compartments. PI4P accumulates at the plant plasma membrane driving its high electrostatic potential, and thereby facilitating interactions with polybasic regions of proteins. PI4Kα1 has been suggested to produce PI4P at the plasma membrane, but how it is recruited to this compartment is unknown. Here, we pin-point the mechanism that tethers PI4Kα1 to the plasma membrane via a nanodomain-anchored scaffolding complex. We identified that PI4Kα1 is part of a complex composed of proteins from the NO-POLLEN-GERMINATION, EFR3-OF-PLANTS, and HYCCIN-CONTAINING families. Comprehensive knock-out and knock-down strategies revealed that subunits of the PI4Kα1 complex are essential for pollen, embryonic and post-embryonic development. We further found that the PI4Kα1 complex is immobilized in plasma membrane nanodomains. Using synthetic mis-targeting strategies, we demonstrate that a combination of lipid anchoring and scaffolding localizes PI4Kα1 to the plasma membrane, which is essential for its function. Together, this work opens new perspectives on the mechanisms and function of plasma membrane nanopatterning by lipid kinases.
- Published
- 2020
20. Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation
- Author
-
Adiilah, Mamode Cassim, Yotam, Navon, Yu, Gao, Marion, Decossas, Laetitia, Fouillen, Axelle, Grélard, Minoru, Nagano, Olivier, Lambert, Delphine, Bahammou, Pierre, Van Delft, Lilly, Maneta-Peyret, Françoise, Simon-Plas, Laurent, Heux, Bruno, Jean, Giovanna, Fragneto, Jenny C, Mortimer, Magali, Deleu, Laurence, Lins, and Sébastien, Mongrand
- Subjects
Ap-GIPC, Allium porrum (leek) GIPC ,GlcNAc, N-acetyl-glucosamine ,VLCFA, Very-long chain fatty acid ,plasma membrane ,ASG, acyl steryl glucoside ,cryo-EM, cryo electronic microscopy ,PC, phosphatidylcholine ,SLB, supported lipid bilayers ,Lo, liquid-ordered ,Langmuir monolayer ,GluCer, Glucosyl ceramide ,DLS, dynamic light scattering ,GlcN, glucosamine ,hVLCFA, 2-hydroxylated VLCFA ,Plants ,Glc, glucose ,POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine ,GlcA, glucuronic acid ,GIPC ,C22, fatty acid with 22 carbon atoms ,ΔGM, the free energy of mixing ,ΔGex, excess free energy of the mixing ,PM, plasma membrane ,FA, fatty acid chain ,solid-state NMR ,lipids (amino acids, peptides, and proteins) ,THF, tetrahydrofuran ,Research Article ,NLP, necrosis and ethylene-inducing peptide 1–like ,Bo-GIPC, Brassica oleracea (cauliflower) GIPC ,neutron reflectivity ,LCB, long chain base ,Biophysics ,Nt-GIPC, Nicotiana tabacum (tobacco) BY-2 GIPC ,Xyl, xylose ,ζ-potential ,Species Specificity ,Polysaccharides ,Os-GIPC, Oryza sativa (rice) GIPC ,SG, steryl glucoside ,GC-MS, Gas chromatography coupled to mass spectrometry ,GIPC, glycosyl inositol phosphoryl ceramide ,phytosterol ,Sphingolipids ,Ara, arabinose ,SM, sphingomyelin ,Cell Membrane ,Man, mannose ,modeling ,LUV, large unilamellar vesicles ,HPTLC, High-performance thin-layer chromatography ,DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine ,IPC, inositol phosphoryl ceramide ,Gal, galactose ,GalA, galacturonic acid ,GUV, giant unilamellar vesicle ,cryo-EM ,PLPC, 1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine - Abstract
The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph–mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.
- Published
- 2020
21. Sphingolipids in plants: a guidebook on their function in membrane architecture, cellular processes, and environmental or developmental responses
- Author
-
Adiilah Mamode Cassim, Françoise Simon-Plas, Yohann Boutté, Sébastien Mongrand, Magali S. Grison, Yoko Ito, Agroécologie [Dijon], Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Univ Bordeaux, CNRS, UMR5200, Lab Biogenese Membranaire, Villenave Dornon, France
- Subjects
Membrane lipids ,[SDV]Life Sciences [q-bio] ,Cell ,Biophysics ,Cell Communication ,Biology ,plasma membrane ,Biochemistry ,03 medical and health sciences ,chemistry.chemical_compound ,symbols.namesake ,Biosynthesis ,Stress, Physiological ,Structural Biology ,cell to cell communication ,Cell polarity ,Genetics ,medicine ,Golgi ,Molecular Biology ,030304 developmental biology ,0303 health sciences ,sphingolipids ,hormones ,Effector ,membrane trafficking ,Cell Membrane ,030302 biochemistry & molecular biology ,membrane lipids ,Cell Biology ,stress response ,Plants ,Golgi apparatus ,Sphingolipid ,Cell biology ,cell polarity ,medicine.anatomical_structure ,Carbohydrate Sequence ,chemistry ,symbols ,lipids (amino acids, peptides, and proteins) ,plant diseases ,Function (biology) - Abstract
National audience; Sphingolipids are fundamental lipids involved in various cellular, developmental and stress-response processes. As such, they orchestrate not only vital molecular mechanisms of living cells but also act in diseases, thus qualifying as potential pharmaceutical targets. Sphingolipids are universal to eukaryotes and are also present in some prokaryotes. Some sphingolipid structures are conserved between animals, plants and fungi, whereas others are found only in plants and fungi. In plants, the structural diversity of sphingolipids, as well as their downstream effectors and molecular and cellular mechanisms of action, are of tremendous interest to both basic and applied researchers, as about half of all small molecules in clinical use originate from plants. Here, we review recent advances towards a better understanding of the biosynthesis of sphingolipids, the diversity in their structures as well as their functional roles in membrane architecture, cellular processes such as membrane trafficking and cell polarity, and cell responses to environmental or developmental signals.
- Published
- 2020
22. Connecting the dots: from nanodomains to physiological functions of REMORINs
- Author
-
Birgit Habenstein, Anthony Legrand, Julien Gronnier, Marie-Dominique Jolivet, Paul Gouguet, Anne-Flore Deroubaix, Sylvie German-Retana, Sébastien Mongrand, Marie Boudsocq, Artemis Perraki, Véronique Germain, Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), University of Tübingen, Department of Plant and Microbial Biology [Zurich, Suisse], Universität Zürich [Zürich] = University of Zurich (UZH), Chimie et Biologie des Membranes et des Nanoobjets (CBMN), École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Department of Plant Sciences, University of Cambridge, Cambridge, UK, Biologie du fruit et pathologie (BFP), Université de Bordeaux (UB)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), French Ministère de l’Enseignement Supérieur et de la Recherche (MESR). EMBO LTF 438-2018 and ERC-2017-COG IMMUNO-PEPTALK ID: 773153. CNRS Momentum., ANR-19-CE13-0021,PhosphoREM-domain,Régulation de la communication intercellulaire - le rôle de la phosphoprotéine REMORIN liée aux nanodomaines de la membrane plasmique(2019), ANR-16-CE20-0008,PotyMove,Facteurs cellulaires recrutés par les potyvirus pour leur transport intercellulaire : de nouvelles sources de résistance des plantes?(2016), ANR-10-LABX-0040,SPS,Saclay Plant Sciences(2010), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), University of Cambridge [UK] (CAM), and Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
0106 biological sciences ,Remorins ,Protein family ,Physiology ,[SDV]Life Sciences [q-bio] ,Arabidopsis ,Pathologie végétale ,Plant Science ,Computational biology ,Biology ,01 natural sciences ,03 medical and health sciences ,Membrane Microdomains ,santé des plantes ,mental disorders ,Genetics ,Focus Issue on Dynamic Membranes ,Hormone signaling ,030304 developmental biology ,Plant Proteins ,0303 health sciences ,Interaction plante pathogène ,Arabidopsis Proteins ,musculoskeletal, neural, and ocular physiology ,Cell Membrane ,[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy ,Phosphorylation ,virologie végétale ,psychological phenomena and processes ,010606 plant biology & botany - Abstract
REMORINs (REMs) are a plant-specific protein family, proposed regulators of membrane-associated molecular assemblies and well-established markers of plasma membrane nanodomains. REMs play a diverse set of functions in plant interactions with pathogens and symbionts, responses to abiotic stresses, hormone signaling and cell-to-cell communication. In this review, we highlight the established and more putative roles of REMs throughout the literature. We discuss the physiological functions of REMs, the mechanisms underlying their nanodomain-organization and their putative role as regulators of nanodomain-associated molecular assemblies. Furthermore, we discuss how REM phosphorylation may regulate their functional versatility. Overall, through data-mining and comparative analysis of the literature, we suggest how to further study the molecular mechanisms underpinning the functions of REMs.
- Published
- 2020
23. Plant–Pathogen Interactions: Underestimated Roles of Phyto-oxylipins
- Author
-
Sébastien Mongrand, Laurence Lins, Estelle Deboever, Marie-Laure Fauconnier, Magali Deleu, Gembloux Agro-Bio Tech [Gembloux], and Université de Liège
- Subjects
0106 biological sciences ,0301 basic medicine ,Plant Science ,Computational biology ,Cyclopentanes ,Biology ,Plants ,01 natural sciences ,03 medical and health sciences ,030104 developmental biology ,Gene Expression Regulation, Plant ,[CHIM]Chemical Sciences ,Stress conditions ,Oxylipins ,Signalling pathways ,Pathogen ,010606 plant biology & botany ,Plant Diseases ,Signal Transduction - Abstract
International audience; Plant (or phyto-) oxylipins (POs) are produced under a wide range of stress conditions and although they are well known to activate stress-related signalling pathways, the nonsignalling roles of POs are poorly understood. We describe oxylipins as direct biocidal agents and propose that structure-function relationships play here a pivotal role. Based on their chemical configuration, POs, such as reactive oxygen and electrophile species, activate defence-related gene expression. We also propose that their ability to interact with pathogen membranes is important, but still misunderstood, and that they are involved in cross-kingdom communication. Taken as a whole, the current literature suggests that POs have a high potential as biocontrol agents. However, the mechanisms underlying these multifaceted compounds remain largely unknown.
- Published
- 2020
24. Purification, characterization and influence on membrane properties of the plant-specific sphingolipids GIPC
- Author
-
Adiilah Mamode Cassim, Delphine Bahammou, Olivier Lambert, Pierre van Delft, Axelle Grélard, Minoru Nagano, Marion Decossas, Yotam Navon, Sébastien Mongrand, Lilly Maneta-Peyret, Françoise Simon-Plas, Laurence Lins, Jenny C. Mortimer, Giovanna Fragneto, Laetitia Fouillen, Laurent Heux, Yu Gao, Magali Deleu, Mongrand, Sébastien, Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur les Macromolécules Végétales (CERMAV), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), University of California [Berkeley], University of California, Chimie et Biologie des Membranes et des Nanoobjets (CBMN), École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Bioénergie Membranaire (LBM), Laboratoire de Bioénergie Membranaire, Ritsumeikan University, Agroécologie [Dijon], Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Laue-Langevin (ILL), ILL, Université de Liège - Gembloux, and Université de Liège
- Subjects
0106 biological sciences ,0303 health sciences ,Glycan ,biology ,[SDV]Life Sciences [q-bio] ,Conjugated system ,01 natural sciences ,Sphingolipid ,[SDV] Life Sciences [q-bio] ,03 medical and health sciences ,chemistry.chemical_compound ,Membrane ,chemistry ,Biochemistry ,Monolayer ,biology.protein ,lipids (amino acids, peptides, and proteins) ,Glycosyl ,Inositol ,Lipid bilayer ,030304 developmental biology ,010606 plant biology & botany - Abstract
The plant plasma membrane (PM) is an essential barrier between the cell and the external environment. The PM is crucial for signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols and phospholipids. The most abundant sphingolipids in the plant PM are the Glycosyl Inositol Phosphoryl Ceramides (GIPCs), representing up to 40% of total sphingolipids, assumed to be almost exclusively in the outer leaflet of the PM. In this study, we investigated the structure of GIPCs and their role in membrane organization. Since GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of different long chain bases and fatty acids. The glycan head groups of the different GIPC series from monocots and dicots were analysed by GC-MS showing different sugar moieties. Multiple biophysics tools namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state2H-NMR and molecular modelling were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the phytosterols species and regulate the gel-to-fluid phase transition during temperature variations.
- Published
- 2020
25. Mechanisms governing subcompartmentalization of biological membranes
- Author
-
Véronique Germain, Julien Gronnier, Birgit Habenstein, Sébastien Mongrand, Anthony Legrand, Antoine Loquet, Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Chimie et Biologie des Membranes et des Nanoobjets (CBMN), Université Sciences et Technologies - Bordeaux 1-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Centre National de la Recherche Scientifique (CNRS), ANR: 11-INBS-0010,METABOHUB,Développement d'une infrastructure française distribuée pour la métabolomique dédiée à l'innovation(2011), Institut de biologie et chimie des protéines [Lyon] (IBCP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Biologie du fruit et pathologie (BFP), Université Bordeaux Segalen - Bordeaux 2-Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1, École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), and ANR-11-INBS-0010,METABOHUB,Développement d'une infrastructure française distribuée pour la métabolomique dédiée à l'innovation(2011)
- Subjects
0106 biological sciences ,0301 basic medicine ,Endoplasmic reticulum ,Cell Membrane ,Biological Transport ,Biological membrane ,Intracellular Membranes ,Plant Science ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Mitochondrion ,Biology ,Endoplasmic Reticulum ,01 natural sciences ,Mitochondria ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,03 medical and health sciences ,030104 developmental biology ,Membrane ,Mitochondrial Membranes ,Biophysics ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Plastids ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,010606 plant biology & botany - Abstract
International audience; Membranes show a tremendous variety of lipids and proteins operating biochemistry, transport and signalling. The dynamics and the organization of membrane constituents are regulated in space and time to execute precise functions. Our understanding of the molecular mechanisms that shape and govern membrane subcompartmentalization and inter-organelle contact sites still remains limited. Here, we review some reported mechanisms implicated in regulating plant membrane domains including those of plasma membrane, plastids, mitochondria and endoplasmic reticulum. Finally, we discuss several state-of-the-art methods that allow nowadays researchers to decipher the architecture of these structures at the molecular and atomic level.; Les membranes présentent une grande variété de lipides et de protéines qui agissent sur la biochimie, le transport et la signalisation. La dynamique et l'organisation des composants membranaires sont régulées dans l'espace et dans le temps pour exécuter des fonctions précises. Notre compréhension des mécanismes moléculaires qui façonnent et régissent la sous-compartimentation membranaire et les sites de contact inter-organiques demeure encore limitée. Ici, nous passons en revue certains mécanismes rapportés impliqués dans la régulation des domaines membranaires des plantes, y compris ceux de la membrane plasmatique, des plastides, des mitochondries et du réticulum endoplasmique. Enfin, nous discutons de plusieurs méthodes de pointe qui permettent aujourd'hui aux chercheurs de déchiffrer l'architecture de ces structures au niveau moléculaire et atomique.
- Published
- 2019
26. Minimal nanodisc without exogenous lipids for stabilizing membrane proteins in detergent-free buffer
- Author
-
Sébastien Mongrand, Cyril Garnier, Marion Decossas, Olivier Lambert, Sophie Lecomte, Jean Christophe Taveau, Gilles Phan, Guy Schoehn, Marie Glavier, Isabelle Broutin, Dimitri Salvador, Laetitia Daury, Chimie et Biologie des Membranes et des Nanoobjets (CBMN), Université Sciences et Technologies - Bordeaux 1-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie structurale (IBS - UMR 5075), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de cristallographie et RMN biologiques (LCRB - UMR 8015), Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5), Université Paris Descartes - Paris 5 (UPD5), Université Paris Descartes - Faculté de Pharmacie de Paris (UPD5 Pharmacie), Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Platefome de Microscopie électronique IBS/ISBG, ANR-10-INBS-05-01/10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010), ANR-10-LABX-0049/10-LABX-0049,GRAL,Grenoble Alliance for Integrated Structural Cell Biology(2010), École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie structurale (IBS - UMR 5075 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Université Paris Descartes - Paris 5 (UPD5)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010), ANR-10-LABX-0049,GRAL,Grenoble Alliance for Integrated Structural Cell Biology(2010), UMR 5248 Chimie et Biologie des Membranes et des Nano-objets, Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Faculté de Pharmacie de Paris - Université Paris Descartes (UPD5 Pharmacie), and Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Scaffold protein ,Biophysics ,Buffers ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Micelle ,Buffer (optical fiber) ,03 medical and health sciences ,Membrane Lipids ,parasitic diseases ,Nanodisc ,030304 developmental biology ,0303 health sciences ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Chemistry ,Cryoelectron Microscopy ,Transporter ,Cell Biology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Lipids ,Transmembrane protein ,0104 chemical sciences ,Nanostructures ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,Membrane ,Membrane protein ,CryoEM ,Bacterial Outer Membrane Proteins - Abstract
International audience; Membrane protein stabilization after detergent solubilization presents drawbacks for structural and biophysical studies, in particular that of a reduced stability in detergent micelles. Therefore, alternative methods are required for efficient stabilization. Lipid nanodisc made with the membrane scaffold protein MSP is a valuable system but requires a fine optimization of the lipid to protein ratio. We present here the use of the scaffold protein MSP without added lipids as a minimal system to stabilize membrane proteins. We show that this method is applicable to α-helical and β-strands transmembrane proteins. This method allowed cryo-electron microscopy structural study of the bacterial transporter MexB. A protein quantification indicates that MexB is stabilized by two MSP proteins. This simplified and efficient method proposes a new advance in harnessing the MSP potential to stabilize membrane proteins.
- Published
- 2019
27. Coiled-coil oligomerization controls localization of the plasma membrane REMORINs
- Author
-
Marion Decossas, Mélanie Berbon, Sébastien Mongrand, Olivier Lambert, Loris Verron, Antoine Loquet, Véronique Germain, Axelle Grélard, Birgit Habenstein, Julien Gronnier, Paul Gouguet, Anthony Legrand, Denis Martinez, Univ Bordeaux, CNRS UMR 5248, Inst Chim & Biol Membranes & Nanoobjets, INP Bordeaux, Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biogenèse Membranaire, CNRS UMR 5200, Université de Bordeaux, INRA Bordeaux Aquitaine, Villenave d'Ornon, France., Chimie et Biologie des Membranes et des Nanoobjets (CBMN), École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de biogenèse membranaire (LBM), and Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Models, Molecular ,Magnetic Resonance Spectroscopy ,Molecular Conformation ,Solid-state NMR ,Protein Structure, Secondary ,Protein filament ,03 medical and health sciences ,Microscopy, Electron, Transmission ,Structural Biology ,In vivo ,Microscopy ,Amino Acid Sequence ,[INFO.INFO-HC]Computer Science [cs]/Human-Computer Interaction [cs.HC] ,Plant Proteins ,030304 developmental biology ,Coiled coil ,0303 health sciences ,Microscopy, Confocal ,Sequence Homology, Amino Acid ,Arabidopsis Proteins ,Chemistry ,Cell Membrane ,Cryoelectron Microscopy ,030302 biochemistry & molecular biology ,REMORIN ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[INFO.INFO-IA]Computer Science [cs]/Computer Aided Engineering ,Recombinant Proteins ,In vitro ,[SPI.MECA.GEME]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph] ,Membrane ,Solid-state nuclear magnetic resonance ,Membrane protein ,Nanodomain ,Biophysics ,Protein Multimerization - Abstract
REMORINs are nanodomain-organized proteins located in the plasma membrane and involved in cellular responses in plants. The dynamic assembly of the membrane nanodomains represents an essential tool of the versatile membrane barriers to control and modulate cellular functions. Nevertheless, the assembly mechanisms and protein organization strategies of nanodomains are poorly understood and many structural aspects are difficult to visualize. Using an ensemble of biophysical approaches, including solid-state nuclear magnetic resonance, cryo-electron microscopy and in vivo confocal imaging, we provide first insights on the role and the structural mechanisms of REMORIN trimerization. Our results suggest that the formation of REMORIN coiled-coil trimers is essential for membrane recruitment and promotes REMORIN assembly in vitro into long filaments by trimer-trimer interactions that might participate in nanoclustering into membrane domains in vivo.
- Published
- 2018
28. Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins
- Author
-
Thorsten Nürnberger, Hannah Böhm, Isabell Albert, Adiilah Mamode-Cassim, Laurence Lins, Jasmin Gömann, Akiko Yamaji-Hasegawa, Jenny C. Mortimer, Agnieszka Zienkiewicz, Tea Lenarčič, Claudia Oecking, Gregor Anderluh, Peter Greimel, Magali Deleu, Ivo Feussner, David Pahovnik, Marjetka Podobnik, Ema Žagar, Rory N Pruitt, Apolonija Bedina Zavec, Katja Pirc, Vesna Hodnik, Sébastien Mongrand, Toshihide Kobayashi, and Lin Fang
- Subjects
0106 biological sciences ,0301 basic medicine ,Phytophthora ,General Science & Technology ,Mutant ,Arabidopsis ,Peptide ,Pythium ,medicine.disease_cause ,computer.software_genre ,Crystallography, X-Ray ,01 natural sciences ,Host Specificity ,03 medical and health sciences ,MD Multidisciplinary ,medicine ,Toxins ,Binding site ,Receptor ,Toxins, Biological ,Plant Diseases ,chemistry.chemical_classification ,Sphingolipids ,Multidisciplinary ,Crystallography ,Binding Sites ,Toxin ,business.industry ,Chemistry ,Cytotoxins ,Prevention ,food and beverages ,Pathogenic bacteria ,Ethylenes ,Biological ,Sphingolipid ,030104 developmental biology ,X-Ray ,Cytolysin ,Artificial intelligence ,business ,Infection ,computer ,Natural language processing ,010606 plant biology & botany - Abstract
An extra sugar protects Many microbial pathogens produce proteins that are toxic to the cells that they are targeting. Broad-leaved plants are susceptible to NLP (necrosis and ethylene-inducing peptide 1–like protein) toxins. Lenarčič et al. identified the receptors for NLP toxins to be GIPC (glycosylinositol phosphorylceramide) sphingolipids (see the Perspective by Van den Ackerveken). Their findings reveal why these toxins only attack broad-leaved plants (so-called eudicots): If the sphingolipid carries just two hexoses, as is the case for eudicots, the toxin binds and causes cell lysis. But in monocots with sphingolipids that have three hexoses, the toxin is ineffective. Science , this issue p. 1431 ; see also p. 1383
- Published
- 2017
29. Revisiting Plant Plasma Membrane Lipids in Tobacco: A Focus on Sphingolipids
- Author
-
Laurence Lins, Laetitia Fouillen, Corinne Buré, Patricia Gerbeau-Pissot, Sébastien Mongrand, Jean-Luc Cacas, Fabienne Furt, Magali Deleu, Emmanuelle Bayer, Claire Bossard, Franck Robert, Jean-Marie Schmitter, Julien Gronnier, Véronique Germain, Françoise Simon-Plas, Emmanuel Maes, Yoann Rombouts, Kevin Grosjean, Jeannine Lherminier, Stéphanie Cluzet, Agroécologie [Dijon], Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Laboratoire de biogenèse membranaire (LBM), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biophysique Moléculaire aux Interfaces, Université de Liège, Worcester Polytechnic Institute, Université de Bordeaux (UB), Bordeaux Metabolome Facility-MetaboHUB [ANR-11-INBS-0010], ARC FIELD project Finding Interesting Elicitor Lipids, Fonds Speciaux pour la Recherche, University of Liege, Belgian Funds for Scientific Research, Tres Grande Infrastructure de Recherche-Resonance Magnetique Nucleaire-Tres Hauts Champs Centre National de la Recherche Scientifique [Fr3050], Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), and Institut National de la Recherche Agronomique (INRA)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Models, Molecular ,0106 biological sciences ,0301 basic medicine ,Physiology ,[SDV]Life Sciences [q-bio] ,Membrane lipids ,Nicotiana tabacum ,Cell Culture Techniques ,Membrane biology ,macromolecular substances ,Plant Science ,Biology ,01 natural sciences ,Glycosphingolipids ,Cell membrane ,Membrane Lipids ,03 medical and health sciences ,chemistry.chemical_compound ,Membrane Microdomains ,Tobacco ,Genetics ,medicine ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Inositol ,Glycosyl ,cardiovascular diseases ,Sphingolipids ,Microscopy, Confocal ,Cell Membrane ,Fatty Acids ,technology, industry, and agriculture ,Phytosterols ,Articles ,Raft ,biology.organism_classification ,Sphingolipid ,Plant Leaves ,030104 developmental biology ,medicine.anatomical_structure ,Biochemistry ,chemistry ,[SDE]Environmental Sciences ,cardiovascular system ,lipids (amino acids, peptides, and proteins) ,010606 plant biology & botany - Abstract
International audience; The lipid composition of plasma membrane (PM) and the corresponding detergent-insoluble membrane (DIM) fraction were analyzed with a specific focus on highly polar sphingolipids, so-called glycosyl inositol phosphorylceramides (GIPCs). Using tobacco (Nicotiana tabacum) 'Bright Yellow 2' cell suspension and leaves, evidence is provided that GIPCs represent up to 40 mol % of the PM lipids. Comparative analysis of DIMs with the PM showed an enrichment of 2-hydroxylated very-long-chain fatty acid-containing GIPCs and polyglycosylated GIPCs in the DIMs. Purified antibodies raised against these GIPCs were further used for immunogold-electron microscopy strategy, revealing the distribution of polyglycosylated GIPCs in domains of 35 +/- 7 nm in the plane of the PM. Biophysical studies also showed strong interactions between GIPCs and sterols and suggested a role for very-long-chain fatty acids in the interdigitation between the two PM-composing monolayers. The ins and outs of lipid asymmetry, raft formation, and interdigitation in plant membrane biology are finally discussed.
- Published
- 2015
30. The plant calcium-dependent protein kinase CPK3 phosphorylates REM1.3 to restrict viral infection
- Author
-
Artemis Perraki, Véronique Germain, Marie Boudsocq, Emmanuelle Bayer, Paul Gouguet, Cyril Zipfel, Julien Gronnier, Vincent Simon, Anne-Flore Deroubaix, Sébastien Mongrand, and Sylvie German-Retana
- Subjects
biology ,Kinase ,fungi ,Callose ,Plasmodesma ,biology.organism_classification ,Potato virus X ,Cell biology ,chemistry.chemical_compound ,chemistry ,Biochemistry ,Phosphorylation ,Arabidopsis thaliana ,Signal transduction ,Protein kinase A - Abstract
Plants respond to pathogens through dynamic regulation of plasma membrane-bound signaling pathways. To date, how the plant plasma membrane is involved in responses to viruses is mostly unknown. Here, we show that plant cells sense the Potato virus X (PVX) COAT PROTEIN and TRIPLE GENE BLOCK 1 proteins and subsequently trigger the activation of a membrane-bound calcium-dependent kinase. We show that theArabidopsis thalianaCALCIUM-DEPENDENT PROTEIN KINASE 3-interacts with group 1 REMORINsin vivo, phosphorylates the intrinsically disordered N-terminal domain of the Group 1 REMORIN REM1.3, and restricts PVX cell-to-cell movement. REM1.3-s phospho-status defines its plasma membrane nanodomain organization and is crucial for REM1.3-dependent restriction of PVX cell-to-cell movement by regulation of callose deposition at plasmodesmata. This study unveils plasma membrane nanodomain-associated molecular events underlying the plant immune response to viruses.
- Published
- 2017
31. Author response: Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains
- Author
-
Julien Gronnier, Jean-Marc Crowet, Birgit Habenstein, Mehmet Nail Nasir, Vincent Bayle, Eric Hosy, Matthieu Pierre Platre, Paul Gouguet, Sylvain Raffaele, Denis Martinez, Axelle Grelard, Antoine Loquet, Françoise Simon-Plas, Patricia Gerbeau-Pissot, Christophe Der, Emmanuelle M Bayer, Yvon Jaillais, Magali Deleu, Véronique Germain, Laurence Lins, and Sébastien Mongrand
- Published
- 2017
32. The Plant Membrane-Associated REMORIN1.3 Accumulates in Discrete Perihaustorial Domains and Enhances Susceptibility to Phytophthora infestans
- Author
-
Sébastien Mongrand, Yasin F. Dagdas, Tolga O. Bozkurt, Sophien Kamoun, A. Richardson, Sylvain Raffaele, The Sainsbury Laboratory [Norwich] (TSL), Department of Life Sciences, Imperial College London, John Innes Centre, Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Unité mixte de recherche interactions plantes-microorganismes, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Gatsby Charitable Foundation, European Research Council, Biotechnology and Biological Sciences Research Council, and Marie Curie Intra European Fellowships [268419, 255104]
- Subjects
0106 biological sciences ,Oomycete ,0303 health sciences ,Physiology ,Effector ,[SDV]Life Sciences [q-bio] ,fungi ,food and beverages ,Articles ,Plant Science ,Biology ,biology.organism_classification ,Plant cell ,01 natural sciences ,Microbiology ,03 medical and health sciences ,Haustorium ,Phytophthora infestans ,Genetics ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Secretion ,Extrahaustorial membrane ,Biogenesis ,030304 developmental biology ,010606 plant biology & botany - Abstract
Filamentous pathogens such as the oomycete Phytophthora infestans infect plants by developing specialized structures termed haustoria inside the host cells. Haustoria are thought to enable the secretion of effector proteins into the plant cells. Haustorium biogenesis, therefore, is critical for pathogen accommodation in the host tissue. Haustoria are enveloped by a specialized host-derived membrane, the extrahaustorial membrane (EHM), which is distinct from the plant plasma membrane. The mechanisms underlying the biogenesis of the EHM are unknown. Remarkably, several plasma membrane-localized proteins are excluded from the EHM, but the remorin REM1.3 accumulates around P. infestans haustoria. Here, we used overexpression, colocalization with reporter proteins, and superresolution microscopy in cells infected by P. infestans to reveal discrete EHM domains labeled by REM1.3 and the P. infestans effector AVRblb2. Moreover, SYNAPTOTAGMIN1, another previously identified perihaustorial protein, localized to subdomains that are mainly not labeled by REM1.3 and AVRblb2. Functional characterization of REM1.3 revealed that it is a susceptibility factor that promotes infection by P. infestans. This activity, and REM1.3 recruitment to the EHM, require the REM1.3 membrane-binding domain. Our results implicate REM1.3 membrane microdomains in plant susceptibility to an oomycete pathogen.
- Published
- 2014
33. A combination of plasma membrane sterol biosynthesis and autophagy is required for shade-induced hypocotyl elongation
- Author
-
Yetkin Çaka Ince, Johanna Krahmer, Anne-Sophie Fiorucci, Martine Trevisan, Vinicius Costa Galvão, Leonore Wigger, Sylvain Pradervand, Laetitia Fouillen, Pierre Van Delft, Manon Genva, Sebastien Mongrand, Hector Gallart-Ayala, Julijana Ivanisevic, and Christian Fankhauser
- Subjects
Science - Abstract
Plants subject to vegetative shade receive a low quantity of blue light (LB) and a low ratio of red to far-red light (LFLR). Here the authors show that while LB induces autophagy, LFLR leads to changes in lipid metabolism, and propose that these processes may contribute to shade avoidance responses.
- Published
- 2022
- Full Text
- View/download PDF
34. Trace element bioavailability, yield and seed quality of rapeseed (Brassica napus L.) modulated by biochar incorporation into a contaminated technosol
- Author
-
Alain Ourry, Sophie Brunel-Muguet, Claire Grosbellet, William Galland, Lilian Marchand, Sébastien Mongrand, Anne Maillard, Nadège Oustriere, Céline Pelosi, María Reyes González-Centeno, Jean-Jacques Bessoule, Qinzhong Zhang, Michel Mench, Valérie Bert, Annette Morvan-Bertrand, Pierre-Louis Teissedre, Biodiversité, Gènes & Communautés (BioGeCo), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB), Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Université Paris-Saclay, Unité de Recherche Oenologie [Villenave d'Ornon], Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV), Ecophysiologie Végétale, Agronomie et Nutritions (EVA), Institut National de la Recherche Agronomique (INRA)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Key Laboratory of Agricultural Environment, Ministry of Agriculture, Sino-Australian Joint Laboratory for Sustainable Agro-Ecosystems, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Institut National de l'Environnement Industriel et des Risques (INERIS), Biodiversité, Gènes et Communautés, Institut National de la Recherche Agronomique (INRA), Université de Bordeaux (UB)-Institut National de la Recherche Agronomique (INRA), USC : Œnologie, Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Recherche Agronomique (INRA), Institut des Sciences de la Vigne et du Vin (ISVV)-Université de Bordeaux (UB)-Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique ( INRA ), UMR 1202 BIOGECO, Université Sciences et Technologies - Bordeaux 1, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes ( ECOSYS ), Institut National de la Recherche Agronomique ( INRA ) -AgroParisTech, Université Paris Saclay, Ecophysiologie Végétale, Agronomie et Nutritions ( EVA ), Université de Caen Normandie ( UNICAEN ), Normandie Université ( NU ) -Normandie Université ( NU ) -Institut National de la Recherche Agronomique ( INRA ), Normandie Université ( NU ), Institut National de la Recherche Agronomique ( INRA ) -Université de Bordeaux ( UB ) -Institut des Sciences de la Vigne et du Vin (ISVV), UMR 5200 CNRS-Université Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Chinese Academy of Agricultural Sciences ( CAAS ), Technologies and Sustainable and Clean Processes, and Institut National de l'Environnement Industriel et des Risques
- Subjects
0106 biological sciences ,Environmental Engineering ,Rapeseed ,phytomanagement ,Photochemistry ,cadmium ,Health, Toxicology and Mutagenesis ,[SDE.MCG]Environmental Sciences/Global Changes ,Amendment ,Biological Availability ,chemistry.chemical_element ,Zinc ,Technosol ,010501 environmental sciences ,01 natural sciences ,brassica napus ,phytoextraction ,Ammonium Compounds ,Biochar ,Botany ,Soil Pollutants ,Environmental Chemistry ,assainissement du sol ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Biomass ,0105 earth and related environmental sciences ,2. Zero hunger ,Cadmium ,lead ,zinc ,Public Health, Environmental and Occupational Health ,General Medicine ,General Chemistry ,Pollution ,6. Clean water ,Trace Elements ,Manure ,Soil conditioner ,[ SDE.MCG ] Environmental Sciences/Global Changes ,Horticulture ,Phytoremediation ,Biodegradation, Environmental ,chemistry ,Metals ,Charcoal ,copper ,Seeds ,010606 plant biology & botany ,technosol - Abstract
Background and aims Rapeseed ( Brassica napus L.) is a Cd/Zn-accumulator whereas soil conditioners such as biochars may immobilize trace elements. These potentially complementary soil remediation options were trialed, singly and in combination, in a pot experiment with a metal( loid )-contaminated technosol. Methods The technosol [total content in mg kg −1 Zn 6089, Cd 9.4, Cu 110, and Pb 956] was either amended (2% w/w) or not with a poultry manure-derived biochar. Rapeseed was cultivated for both soil treatments during 24 weeks up to harvest under controlled conditions. Results Biochar incorporation into the technosol promoted the As, Cd, Cu, Mo, Ni, Pb and Zn solubility. It decreased foliar B, Cu and Mo concentrations, and Mo concentration in stems, pericarps and seeds. But, it did not impact neither the biomass of aerial rapeseed parts (except a decrease for seeds), nor their C (except a decrease for stems), seed fatty acid, seed starch and soluble sugar contents, and antioxidant capacity in both leaves and seeds. Biochar amendment increased the phytoextraction by aerial plant parts for K, P, and S, reduced it for N, Ca, B, Mo, Ni and Se, whereas it remained steady for Mg, Zn, Fe, Mn, Cu, Cd and Co. Conclusions The biochar incorporation into this technosol did not promote Cd, Cu and Zn phytoextraction by rapeseed and its potential oilseed production, but increased the solubility of several metal( loid )s. Here Zn and Cd concentrations in the soil pore water were decreased by rapeseed, showing the feasibility to strip available soil Zn and Cd in combination with seed production.
- Published
- 2016
35. Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative burst in response to cryptogein
- Author
-
Jérôme Fromentin, Sébastien Mongrand, Jean-Luc Cacas, Emmanuelle Jeannette, Dominique Thomas, Patricia Gerbeau-Pissot, Françoise Simon-Plas, Tetiana Kalachova, Eric Ruelland, Catherine Cantrel, Agroécologie [Dijon], Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes (UR5), Université Pierre et Marie Curie - Paris 6 (UPMC), Institut d'écologie et des sciences de l'environnement de Paris (iEES), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Recherche Agronomique (INRA), Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique ( INRA ) -Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes ( UR5 ), Université Pierre et Marie Curie - Paris 6 ( UPMC ), Institut d'écologie et des sciences de l'environnement de Paris ( IEES ), Institut National de la Recherche Agronomique ( INRA ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris-Est Créteil Val-de-Marne - Paris 12 ( UPEC UP12 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de biogenèse membranaire ( LBM ), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique ( CNRS ), and Institut d'écologie et des sciences de l'environnement de Paris (IEES)
- Subjects
0106 biological sciences ,0301 basic medicine ,Physiology ,diacylglycerol kinase ,Plant Science ,01 natural sciences ,cryptogein ,chemistry.chemical_compound ,Cluster Analysis ,phospholipase C ,Phylogeny ,Plant Proteins ,Respiratory Burst ,chemistry.chemical_classification ,reactive oxygen species ,NADPH oxidase ,biology ,Kinase ,[ SDV.BV.PEP ] Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy ,Phosphatidic acid ,Plants, Genetically Modified ,Respiratory burst ,phosphatidic acid ,Biochemistry ,Gain of Function Mutation ,Phosphatidic Acids ,Cell Line ,Fungal Proteins ,03 medical and health sciences ,Tobacco ,Gene Silencing ,Protein Kinase Inhibitors ,Diacylglycerol kinase ,[ SDE.BE ] Environmental Sciences/Biodiversity and Ecology ,Reactive oxygen species ,RBOHD ,Phospholipase C ,Pathogen-Associated Molecular Pattern Molecules ,NADPH Oxidases ,[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy ,Enzyme Activation ,MicroRNAs ,030104 developmental biology ,Enzyme ,chemistry ,Type C Phospholipases ,biology.protein ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,010606 plant biology & botany ,microbial-associated molecular pattern - Abstract
SPE IPM UB INRA SUPDAT; International audience; Cryptogein is a 10 kDa-protein secreted by the oomycete Phytophthora cryptogea that activates defence mechanisms in tobacco plants. Among early signalling events triggered by this microbial-associated molecular pattern is a transient apoplastic oxidative burst which is dependent on the NADPH oxidase activity of the RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) isoform D. Using radioactive [33P]-orthophosphate labelling of tobacco Bright Yellow-2 suspension cells, we here provide in vivo evidence for a rapid accumulation of phosphatidic acid (PA) in response to cryptogein due to the coordinated onset of phosphoinositide-dependent phospholipase C and diacylglycerol kinase (DGK) activities. Both enzyme specific inhibitors and silencing of the phylogenetic cluster III of the tobacco DGK family were found to reduce PA production upon elicitation and to strongly decrease the RBOHD-mediated oxidative burst. Therefore, it appears that PA originating from DGK controls NADPH-oxidase activity. Amongst cluster III DGKs, the expression of DGK5-like was up-regulated in response to cryptogein. Besides DGK5-like is likely to be the main cluster III DGK isoform silenced in one of our mutant line, making it a strong candidate for the observed response to cryptogein. The relevance of these results is discussed with regard to early signalling lipid-mediated events in plant immunity.
- Published
- 2016
36. Enrichment of hydroxylated C24-and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains
- Author
-
Lysiane Brocard, Patrick Moreau, Nicolas Esnay, Valérie Wattelet-Boyer, Frédéric Domergue, Sébastien Mongrand, Natasha V. Raikhel, Jérôme Joubès, Kristoffer Jonsson, Rishikesh P. Bhalerao, Yohann Boutté, UMR 5200 Membrane Biogenesis Laboratory, Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB), Institut National de la Recherche Agronomique (INRA), Bordeaux Imaging Center (BIC), Université de Bordeaux (UB)-Institut François Magendie-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Umea Plant Science Center (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU)-Swedish University of Agricultural Sciences (SLU), Biologie végétale intégrative (BVI), Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut National de la Recherche Agronomique (INRA)-Université Bordeaux Segalen - Bordeaux 2, Center for Plant Cell Biology - Department of Botany and Plant Sciences, University of California [Riverside] (UCR), University of California-University of California, College of Science [Swansea], Swansea University, Biologie du fruit et pathologie (BFP), Université Bordeaux Segalen - Bordeaux 2-Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1, initiative d'excellence de l'Universite de Bordeaux (IdEx Bordeaux), French National Research Center (CNRS), French National Research Agency (ANR) [NT09_517917, 2010 BLAN 1319 03], Knut and Alice Wallenberg foundation, French National Research Agency [ANR-10-INBS-04, ANR-11-INBS-0010], Umeå Plant Science Centre - Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), College of Science, Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Boutté, Yohann, ProdInra, Archive Ouverte, Laboratoire de biogenèse membranaire (LBM), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Université Bordeaux Segalen - Bordeaux 2-Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1 (UB)-Centre National de la Recherche Scientifique (CNRS), University of California [Riverside] (UC Riverside), University of California (UC)-University of California (UC), Université Bordeaux Segalen - Bordeaux 2-Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1 (UB), and Université Sciences et Technologies - Bordeaux 1-Institut National de la Recherche Agronomique (INRA)-Université Bordeaux Segalen - Bordeaux 2
- Subjects
0301 basic medicine ,Science ,[SDV]Life Sciences [q-bio] ,General Physics and Astronomy ,macromolecular substances ,Biology ,environment and public health ,Article ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,symbols.namesake ,Auxin ,Arabidopsis ,Compartment (development) ,chemistry.chemical_classification ,Multidisciplinary ,fungi ,food and beverages ,General Chemistry ,Apical membrane ,Golgi apparatus ,biology.organism_classification ,Secretory Vesicle ,Sphingolipid ,Cell biology ,[SDV] Life Sciences [q-bio] ,carbohydrates (lipids) ,030104 developmental biology ,chemistry ,Acyl chain ,symbols ,lipids (amino acids, peptides, and proteins) - Abstract
The post-Golgi compartment trans-Golgi Network (TGN) is a central hub divided into multiple subdomains hosting distinct trafficking pathways, including polar delivery to apical membrane. Lipids such as sphingolipids and sterols have been implicated in polar trafficking from the TGN but the underlying mechanisms linking lipid composition to functional polar sorting at TGN subdomains remain unknown. Here we demonstrate that sphingolipids with α-hydroxylated acyl-chains of at least 24 carbon atoms are enriched in secretory vesicle subdomains of the TGN and are critical for de novo polar secretory sorting of the auxin carrier PIN2 to apical membrane of Arabidopsis root epithelial cells. We show that sphingolipid acyl-chain length influences the morphology and interconnections of TGN-associated secretory vesicles. Our results uncover that the sphingolipids acyl-chain length links lipid composition of TGN subdomains with polar secretory trafficking of PIN2 to apical membrane of polarized epithelial cells., Sphingolipids in the trans-Golgi network have been implicated in polar trafficking. Here Wattelet-Boyer et al. show that hydroxylated C24- and C26-acyl-chain sphingolipids are enriched in trans-Golgi network subdomains that are critical for polar sorting of the PIN2 auxin carrier in plant cells.
- Published
- 2016
37. A shotgun proteomic approach reveals that fe deficiency causes marked changes in the protein profiles of plasma membrane and detergent-resistant microdomain preparations from beta vulgaris roots
- Author
-
Sabine Lüthje, Ana Flor López-Millán, Elain Gutierrez-Carbonell, Bruno Contreras-Moreira, Sébastien Mongrand, José A. González-Reyes, Matsuo Uemura, Daisuke Takahashi, Anunciación Abadía, Javier Abadía, Estación Experimental de Aula Dei (EEAD) - Plant Stress Physiology Group, Plant Nutrition Department, Spanish National Research Council (CSIC), Fibrostatin SL, University of Valencia, Faculty of Agriculture, United Graduate School of Agricultural Science, Iwate University, Cryobiofrontier Research Center - Faculty of Agriculture, Max Planck Institute of Molecular Plant Physiology (MPI-MP), Max-Planck-Gesellschaft, Biocenter Klein Flottbek, University of Hamburg, Departamento de Biología Celular, Fisiología e Inmunología, University of Córdoba [Córdoba], Biologie végétale intégrative (BVI), Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut National de la Recherche Agronomique (INRA)-Université Bordeaux Segalen - Bordeaux 2, Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB), Estación Experimental de Aula Dei (EEAD) Laboratory of Computational and Structural Biology, Consejo Superior de Investigaciones Científicas, Fundación ARAID, Plant Stress Physiology Group - Plant Nutrition Department, Plant Stress Physiology Group, Plant Nutrition Department, Department of Pediatrics, Baylor College of Medicine, USDA-ARS : Agricultural Research Service, Spanish Ministry of Economy and Competitivity (MINECO) [AGL2012-31988, AGL2013-42175-R], FEDER, Aragon Government (Group A03), Japan Society for the Promotion of Science [24-7373, 22120003, 24370018], Bordeaux Metabolome Facility-MetaboHUB [ANR-11-INBS-0010], platform Metabolome-Lipidome-Fluxome of Bordeaux, and JAE Pre-CSIC contract
- Subjects
0106 biological sciences ,0301 basic medicine ,Proteomics ,[SDV]Life Sciences [q-bio] ,Phosphatidic Acids ,Biology ,Plant Roots ,01 natural sciences ,Biochemistry ,Cell membrane ,03 medical and health sciences ,chemistry.chemical_compound ,Membrane Microdomains ,Lipidomics ,medicine ,Phosphorylation ,Iron deficiency (plant disorder) ,Plant Proteins ,Iron deficiency ,Sugar beet ,Cell Membrane ,Lipid microdomain ,Detergent-resistant microdomain ,Iron Deficiencies ,General Chemistry ,Phosphatidic acid ,Lipids ,030104 developmental biology ,Membrane ,medicine.anatomical_structure ,chemistry ,Beta vulgaris ,010606 plant biology & botany ,Plasma membrane - Abstract
15 Pags.- Tabls.- Figs., In the present study we have used label-free shotgun proteomic analysis to examine the effects of Fe deficiency on the protein profiles of highly pure sugar beet root plasma membrane (PM) preparations and detergent-resistant membranes (DRMs), the latter as an approach to study microdomains. Altogether, 545 proteins were detected, with 52 and 68 of them changing significantly with Fe deficiency in PM and DRM, respectively. Functional categorization of these proteins showed that signaling and general and vesicle-related transport accounted for approximately 50% of the differences in both PM and DRM, indicating that from a qualitative point of view changes induced by Fe deficiency are similar in both preparations. Results indicate that Fe deficiency has an impact in phosphorylation processes at the PM level and highlight the involvement of signaling proteins, especially those from the 14–3–3 family. Lipid profiling revealed Fe-deficiency-induced decreases in phosphatidic acid derivatives, which may impair vesicle formation, in agreement with the decreases measured in proteins related to intracellular trafficking and secretion. The modifications induced by Fe deficiency in the relative enrichment of proteins in DRMs revealed the existence of a group of cytoplasmic proteins that appears to be more attached to the PM in conditions of Fe deficiency.
- Published
- 2016
38. Polyphosphoinositides Are Enriched in Plant Membrane Rafts and Form Microdomains in the Plasma Membrane
- Author
-
Elodie Noirot, Sébastien Mongrand, Ingo Heilmann, Jean-Jacques Bessoule, Jeanine Lherminier, Rémi Zallot, Fabienne Furt, Françoise Sargueil, Françoise Simon-Plas, Thomas Stanislas, Sabine König, Université de Bordeaux Ségalen [Bordeaux 2], Georg-August-University [Göttingen], Plante - microbe - environnement : biochimie, biologie cellulaire et écologie (PMEBBCE), and Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-Institut National de la Recherche Agronomique (INRA)-Etablissement National d'Enseignement Supérieur Agronomique de Dijon (ENESAD)
- Subjects
0106 biological sciences ,Physiology ,Nicotiana tabacum ,Phosphatidylinositol Phosphates ,nicotiana tabacum ,Plant Science ,Plants genetics ,membrane plasmique ,MICRODOMAINE ,01 natural sciences ,DIMs ,MICORSCOPIE ,[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics ,Cell membrane ,03 medical and health sciences ,chemistry.chemical_compound ,Génétique des plantes ,Genetics ,medicine ,Phosphatidylinositol ,membrane ,lipide ,030304 developmental biology ,0303 health sciences ,acide gras ,biology ,polyphosphoinositide ,Metabolism ,biology.organism_classification ,Sterol ,tabac ,Membrane ,medicine.anatomical_structure ,chemistry ,Biochemistry ,Signal transduction ,010606 plant biology & botany - Abstract
L'article original est publié par The American Society of Plant Biologists; International audience; In this article, we analyzed the lipid composition of detergent-insoluble membranes (DIMs) purified from tobacco (Nicotiana tabacum) plasma membrane (PM), focusing on polyphosphoinositides, lipids known to be involved in various signal transduction events. Polyphosphoinositides were enriched in DIMs compared with whole PM, whereas all structural phospholipids were largely depleted from this fraction. Fatty acid composition analyses suggest that enrichment of polyphosphoinositides in DIMs is accompanied by their association with more saturated fatty acids. Using an immunogold-electron microscopy strategy, we were able to visualize domains of phosphatidylinositol 4,5-bisphosphate in the plane of the PM, with 60% of the epitope found in clusters of approximately 25 nm in diameter and 40% randomly distributed at the surface of the PM. Interestingly, the phosphatidylinositol 4,5-bisphosphate cluster formation was not significantly sensitive to sterol depletion induced by methyl-β-cyclodextrin. Finally, we measured the activities of various enzymes of polyphosphoinositide metabolism in DIMs and PM and showed that these activities are present in the DIM fraction but not enriched. The putative role of plant membrane rafts as signaling membrane domains or membrane-docking platforms is discussed.
- Published
- 2010
39. A remorin protein interacts with symbiotic receptors and regulates bacterial infection
- Author
-
Jeremy D. Murray, Sylvain Raffaele, Sandra Moreau, Laurence Godiard, Thomas Ott, Michael K. Udvardi, Joana Bittencourt-Silvestre, Dörte Klaus, Pascal Gamas, Laurent Deslandes, Andreas Niebel, Katalin Tóth, Benoit Lefebvre, Sébastien Mongrand, Julie V. Cullimore, Ton Timmers, Christine Hervé, Malick Mbengue, Unité mixte de recherche interactions plantes-microorganismes, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Ludwig Maximilians University of Munich, Plant Biology Division, The Samuel Roberts Noble Foundation, Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Marie-Curie Intra-European Fellowship : 024587, French Agence National de la Recherche : ANR-05-BLAN-0243-01, European Community's Sixth Framework Programme, MRTN-CT-2006-035546, German Academic exchange service, German Research Council (DFG) : OT 423/1-1, and Biotechnology and Biological Sciences Research Council : BB/G023832/1
- Subjects
0106 biological sciences ,Scaffold protein ,Cell signaling ,Root nodule ,Molecular Sequence Data ,SCAFFOLDING PROTEIN ,REMORINE ,RECEPTOR-LIKE KINASE ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,01 natural sciences ,Rhizobia ,03 medical and health sciences ,Transformation, Genetic ,Medicago truncatula ,Symbiosis ,DNA Primers ,Plant Proteins ,030304 developmental biology ,Genetics ,0303 health sciences ,Sinorhizobium meliloti ,Multidisciplinary ,Base Sequence ,biology ,fungi ,REMORIN ,food and beverages ,Biological Sciences ,Phosphoproteins ,Plants, Genetically Modified ,biology.organism_classification ,Cell biology ,INTERACTION PLANTE MICROORGANISME ,SIGNALING ,Cytoplasm ,Mutation ,RNA Interference ,Signal transduction ,PLANT PROTEIN ,Carrier Proteins ,NODULE ,Rhizobium ,Signal Transduction ,010606 plant biology & botany - Abstract
Remorin proteins have been hypothesized to play important roles during cellular signal transduction processes. Induction of some members of this multigene family has been reported during biotic interactions. However, no roles during host-bacteria interactions have been assigned to remorin proteins until now. We used root nodule symbiosis between Medicago truncatula and Sinorhizobium meliloti to study the roles of a remorin that is specifically induced during nodulation. Here we show that this oligomeric remorin protein attaches to the host plasma membrane surrounding the bacteria and controls infection and release of rhizobia into the host cytoplasm. It interacts with the core set of symbiotic receptors that are essential for perception of bacterial signaling molecules, and thus might represent a plant-specific scaffolding protein.
- Published
- 2010
40. Up regulation of the plant protein remorin correlates with dehiscence and cell maturation; a link with the maturation of plasmodesmata?
- Author
-
Sébastien Mongrand, Sylvain Raffaele, and Emmanuelle Bayer
- Subjects
0106 biological sciences ,0303 health sciences ,Plant Science ,Plasmodesma ,Biology ,Cell Maturation ,01 natural sciences ,Cell biology ,Cell membrane ,03 medical and health sciences ,medicine.anatomical_structure ,Membrane protein ,Downregulation and upregulation ,Plant protein ,Gene expression ,medicine ,Lipid raft ,030304 developmental biology ,010606 plant biology & botany - Abstract
Remorins are plant-specific proteins found associated with plasma membrane microdomains, called lipid rafts. Recently, we have shown that this lipid raft marker also accumulated at plasmodesmata, likely within the plasma membrane lining these structures. Here, we have investigated the gene expression and protein accumulation patterns of remorin at the organ and cell type levels. We show that remorin level is significantly increased in dehiscent, mature and ageing tissues, as well as in source parts of the leaves, where mature branched plasmodesmata are in majority. These results suggest that remorin predominantly associates with mature branched plasmodesmata.
- Published
- 2009
41. Influenza virus-like particles produced by transient expression inNicotiana benthamianainduce a protective immune response against a lethal viral challenge in mice
- Author
-
Sébastien Mongrand, Louis-P. Vézina, Marc-André D'Aoust, Michèle Dargis, Nathalie Landry, Jean-Martin Guay, Sonia Trépanier, Manon Couture, Brian J. Ward, and Pierre-Olivier Lavoie
- Subjects
Agroinfiltration ,Influenza vaccine ,viruses ,Orthomyxoviridae ,Nicotiana benthamiana ,Hemagglutinin Glycoproteins, Influenza Virus ,Plant Science ,medicine.disease_cause ,Virus ,Microbiology ,Mice ,Influenza A Virus, H1N1 Subtype ,Orthomyxoviridae Infections ,Virus-like particle ,Tobacco ,Influenza A virus ,medicine ,Animals ,Influenza A Virus, H5N1 Subtype ,biology ,Influenza A Virus, H3N2 Subtype ,virus diseases ,Hemagglutination Inhibition Tests ,Plants, Genetically Modified ,biology.organism_classification ,Virology ,Influenza A virus subtype H5N1 ,Influenza Vaccines ,Agronomy and Crop Science ,Biotechnology - Abstract
A strain-specific vaccine represents the best possible response to the threat of an influenza pandemic. Rapid delivery of such a vaccine to the world's population before the peak of the first infection wave seems to be an unattainable goal with the current influenza vaccine manufacturing capacity. Plant-based transient expression is one of the few production systems that can meet the anticipated surge requirement. To assess the capability of plant agroinfiltration to produce an influenza vaccine, we expressed haemagglutinin (HA) from strains A/Indonesia/5/05 (H5N1) and A/New Caledonia/20/99 (H1N1) by agroinfiltration of Nicotiana benthamiana plants. Size distribution analysis of protein content in infiltrated leaves revealed that HA was predominantly assembled into high-molecular-weight structures. H5-containing structures were purified and examination by transmission electron microscopy confirmed virus-like particle (VLP) assembly. High-performance thin layer chromatography analysis of VLP lipid composition highlighted polar and neutral lipid contents comparable with those of purified plasma membranes from tobacco plants. Electron microscopy of VLP-producing cells in N. benthamiana leaves confirmed that VLPs accumulated in apoplastic indentations of the plasma membrane. Finally, immunization of mice with two doses of as little as 0.1 microg of purified influenza H5-VLPs triggered a strong immune response against the homologous virus, whereas two doses of 0.5 microg of H5-VLPs conferred complete protection against a lethal challenge with the heterologous A/Vietnam/1194/04 (H5N1) strain. These results show, for the first time, that plants are capable of producing enveloped influenza VLPs budding from the plasma membrane; such VLPs represent very promising candidates for vaccination against influenza pandemic strains.
- Published
- 2008
42. RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis
- Author
-
Nam-Hai Chua, Shih-Shun Lin, In-Cheol Jang, Raquel Martin, Sébastien Mongrand, Kuan-Chun Chen, and Steven Vandenabeele
- Subjects
Hypersensitive response ,Ceramide ,Programmed cell death ,Ubiquitin-Protein Ligases ,Molecular Sequence Data ,Arabidopsis ,Apoptosis ,Plant Science ,Biology ,Genes, Plant ,Fumonisins ,chemistry.chemical_compound ,Membrane Microdomains ,Ubiquitin ,Gene Expression Regulation, Plant ,Genetics ,Amino Acid Sequence ,Cloning, Molecular ,Lipid raft ,Plant Proteins ,Base Sequence ,Arabidopsis Proteins ,Cell Membrane ,Ubiquitination ,food and beverages ,Cell Biology ,biology.organism_classification ,Molecular biology ,Recombinant Proteins ,Ubiquitin ligase ,Cell biology ,chemistry ,RNA, Plant ,biology.protein ,Cell fractionation ,RING Finger Domains - Abstract
Ubiquitination plays important roles in plant development, including programmed cell death. Here, we characterize a novel membrane-bound RING motif protein, encoded by RING1, that is expressed at a low level in all Arabidopsis tissues but can be upregulated by fumonisin B1 (FB1) treatment and pathogen infection. RING1 displays E3 ubiquitin ligase activity in vitro, which is dependent on the integrity of the RING motif. GFP fusion protein localization and cell fractionation experiments show that this E3 ligase is associated with the lipid rafts of plasma membranes. Knock-down of RING1 transcripts using artificial microRNA (amiR-R1(159)) leads to FB1 hyposensitivity, but overexpression of RING1 confers hypersensitivity. Additionally, expression of the pathogenesis-related 1 (PR-1) gene is lower and delayed in amiR-R1(159) plants compared with wild-type and RING1-overexpressing plants. The FB1 hyposensitivity of amiR-R1(159) plants can be rescued by expression of cleavage-resistant RING1mut transcripts. Our results suggest that RING1 acts as a signal from the plasma membrane lipid rafts to trigger the FB1-induced plant programmed cell death pathway.
- Published
- 2008
43. Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization
- Author
-
Sébastien Mongrand, Hedi Harizi, Françoise Sargueil, Sophie Layé, Aurélie Moranis, Véronique De Smedt-Peyrusse, Psychoneuroimmunologie, nutrition et génétique, Université Bordeaux Segalen - Bordeaux 2-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de biogenèse membranaire (LBM), and Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Lipopolysaccharides ,Lipopolysaccharide ,[SDV]Life Sciences [q-bio] ,medicine.medical_treatment ,Lipopolysaccharide Receptors ,LIPOPOLYSACCHARIDE ,Biochemistry ,Mice ,chemistry.chemical_compound ,0302 clinical medicine ,INTERLEUKIN-1 ,Drug Interactions ,Receptor ,Cell Line, Transformed ,0303 health sciences ,Microglia ,Flow Cytometry ,Cell biology ,Protein Transport ,medicine.anatomical_structure ,Cytokine ,Docosahexaenoic acid ,Cytokines ,lipids (amino acids, peptides, and proteins) ,Tumor necrosis factor alpha ,Signal transduction ,RAFT ,Signal Transduction ,Docosahexaenoic Acids ,Down-Regulation ,Enzyme-Linked Immunosorbent Assay ,Biology ,Proinflammatory cytokine ,03 medical and health sciences ,Cellular and Molecular Neuroscience ,Membrane Microdomains ,medicine ,Animals ,BACTERIE GRAM-NEGATIVE ,030304 developmental biology ,Analysis of Variance ,Tumor Necrosis Factor-alpha ,TOLL-LIKE RECEPTOR-4 ,DOCOSAHEXAENOIC ACID ,Protein Structure, Tertiary ,Toll-Like Receptor 4 ,chemistry ,030217 neurology & neurosurgery - Abstract
International audience; Recognition of lipopolysaccharide (LPS), the endotoxin of gram-negative bacteria, by microglia occurs through its binding to specific receptors, cluster of differentiation 14 and toll-like receptor-4. LPS binding to these receptors triggers the synthesis of proinflammatory cytokines that coordinate the brain innate immune response to protect the CNS of the infection. Docosahexaenoic acid (DHA), a n-3 polyunsaturated fatty acid highly incorporated in the brain, is a potent immunomodulator. In this study, we investigated whether DHA modulates LPS receptor localization and, as a consequence, LPS-induced signaling pathway and proinflammatory cytokine production. We demonstrated that DHA, when added exogenously, is specifically enriched in membrane phospholipids, but not in raft lipids of microglial cells. DHA incorporation in membrane impaired surface presentation of LPS receptors cluster of differentiation 14 and toll-like receptor-4, but not their membrane subdomain localization. LPS-induced nuclear factor kappa B activation was inhibited by DHA, hence, LPS-induced proinflammatory cytokine synthesis of interleukin-1β and tumor necrosis factor α was strongly attenuated. We suggest that DHA is highly anti-inflammatory by targeting LPS receptor surface location, therefore reducing LPS action on microglia. This effect represents a new insight by which DHA modulates in the brain the expression of proinflammatory cytokines in response to bacterial product.
- Published
- 2008
44. Plant Lipid Rafts, Fluctuat nec mergitur
- Author
-
Fabienne Furt, Sébastien Mongrand, Julie V. Cullimore, Benoit Lefebvre, and Jean-Jacques Bessoule
- Subjects
biology ,fungi ,food and beverages ,Lipid metabolism ,Plant Science ,biology.organism_classification ,Sphingolipid ,Sterol ,Medicago truncatula ,Cell biology ,Membrane ,Biochemistry ,Lipid droplet ,lipids (amino acids, peptides, and proteins) ,Signal transduction ,Lipid raft - Abstract
Lipid rafts in plasma membranes are hypothesized to play key roles in many cellular processes including signal transduction, membrane trafficking and entry of pathogens. We recently documented the biochemical characterization of lipid rafts, isolated as detergent-insoluble membranes, from Medicago truncatula root plasma membranes. We evidenced that the plant-specific lipid steryl-conjugates are among the main lipids of rafts together with free sterols and sphingolipids. An extensive proteomic analysis showed the presence of a specific set of proteins common to other lipid rafts, plus the presence of a redox system around a cytochrome b(561) not previously identified in lipid rafts of either plants or animals. Here, we discuss the similarities and differences between the lipids and proteins of plant and animal lipid rafts. Moreover we describe the potential biochemical functioning of the M. truncatula root lipid raft redox proteins and question whether they may play a physiological role in legume-symbiont interactions.
- Published
- 2007
45. Association mapping fo quantitative responses to Turnip Mosaic Virus (TuMV) infection trait loci in Arabidopsis thaliana through evaluation of biomass, viral accumulation, and metabolic profiles
- Author
-
Anais Graveleau, Bernadette Rubio, Zofia NEHR, Patrick Cosson, Mélodie Caballero, Laetitia Fouillen, Frederic Revers, Sébastien Mongrand, Yves Gibon, Francoise Roux, Valerie Schurdi-Levraud, Biologie du fruit et pathologie (BFP), Université Bordeaux Segalen - Bordeaux 2-Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1, Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), and ProdInra, Archive Ouverte
- Subjects
[SDV.MP.VIR] Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,[SDV.SA] Life Sciences [q-bio]/Agricultural sciences ,virus phytopathogène ,viruses ,arabidopsis thaliana ,food and beverages ,[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy ,phytopathogenic virus ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,turnip mosaic virus ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,[SDV.BV] Life Sciences [q-bio]/Vegetal Biology ,virologie végétale ,virus de la mosaïque du navet ,métabolisme ,[SDV.BV.PEP] Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy - Abstract
Association mapping fo quantitative responses to [i]Turnip Mosaic Virus[/i] (TuMV) infection trait loci in [i]Arabidopsis thaliana[/i] through evaluation of biomass, viral accumulation, and metabolic profiles. GDR Génétique Quantitative dans les Populations Naturelles
- Published
- 2015
46. Differential Effect of Plant Lipids on Membrane Organization
- Author
-
Laurent Beney, Kevin Grosjean, Patricia Gerbeau-Pissot, Françoise Simon-Plas, Sébastien Mongrand, Agroécologie [Dijon], Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Procédés Microbiologiques et Biotechnologiques (PMB), Procédés Alimentaires et Microbiologiques (PAM), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Procédés Alimentaires et Microbiologiques [Dijon] (PAM), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC), and Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)
- Subjects
0106 biological sciences ,Campesterol ,Membrane lipids ,Biology ,Membrane Reconstitution ,01 natural sciences ,Biochemistry ,03 medical and health sciences ,chemistry.chemical_compound ,Microscopic Imaging ,Membrane fluidity ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Molecular Biology ,Lipid raft ,030304 developmental biology ,Sterol ,0303 health sciences ,Vesicle ,Cell Biology ,Sphingolipid ,Phospholipid Vesicle ,GIPC ,Membrane ,chemistry ,Conjugated Forms of Phytosterol ,Glycerosphingolipid ,lipids (amino acids, peptides, and proteins) ,Lipid Rafts ,010606 plant biology & botany - Abstract
SPE IPM; International audience; The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains.
- Published
- 2015
47. Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols
- Author
-
Kevin, Grosjean, Sébastien, Mongrand, Laurent, Beney, Françoise, Simon-Plas, and Patricia, Gerbeau-Pissot
- Subjects
Models, Molecular ,Sphingolipids ,Microscopy, Confocal ,1,2-Dipalmitoylphosphatidylcholine ,fungi ,Cell Membrane ,food and beverages ,Phytosterols ,Plants ,Lipids ,Cell Line ,Membrane Lipids ,Cholesterol ,Imaging, Three-Dimensional ,Spectrometry, Fluorescence ,Membrane Biology ,Phosphatidylcholines ,lipids (amino acids, peptides, and proteins) - Abstract
The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains.
- Published
- 2015
48. Specific membrane lipid composition is important for Plasmodesmata function in Arabidopsis
- Author
-
Laetitia Fouillen, Vera Wewer, Stéphane Claverol, Lysiane Brocard, Yoselin Benitez-Alfonso, Emmanuelle Bayer, Yohann Boutté, Sébastien Mongrand, William J Nicolas, Houda Nacir, Véronique Germain, Magali S. Grison, Peter Dörmann, UMR 5200, Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB), Biologie du fruit et pathologie (BFP), Université Bordeaux Segalen - Bordeaux 2-Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1, Institut National de la Recherche Agronomique (INRA), Institute of Molecular Physiology and Biotechnology of Plants, Rheinische Friedrich-Wilhelms-Universität Bonn, University of Leeds, SFR BIE grant, French National Research Agency (ANR) ANR-14-CE19-0006-01, and MetaboHUB-ANR-11-INBS-0010
- Subjects
0106 biological sciences ,0303 health sciences ,[SDV]Life Sciences [q-bio] ,Cell Biology ,Plant Science ,Plasmodesma ,Biology ,biology.organism_classification ,01 natural sciences ,Sphingolipid ,Sterol ,03 medical and health sciences ,Membrane ,Biochemistry ,Permeability (electromagnetism) ,Arabidopsis ,[SDE]Environmental Sciences ,Biophysics ,Arabidopsis thaliana ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,lipids (amino acids, peptides, and proteins) ,Intracellular ,030304 developmental biology ,010606 plant biology & botany - Abstract
Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of “native” PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes.
- Published
- 2015
49. Lipid Rafts in Higher Plant Cells
- Author
-
Françoise Simon-Plas, Marc Bonneu, Johanne Morel, Sébastien Mongrand, Stéphane Claverol, Jean-Pierre Carde, Marie-Andrée Hartmann, Jean-Jacques Bessoule, René Lessire, and Jeanny Laroche
- Subjects
Gel electrophoresis ,Ergosterol ,NADPH oxidase ,biology ,Cell Biology ,medicine.disease_cause ,Biochemistry ,Sphingolipid ,Cell biology ,chemistry.chemical_compound ,Membrane ,chemistry ,Membrane protein ,Protein targeting ,medicine ,biology.protein ,lipids (amino acids, peptides, and proteins) ,Molecular Biology ,Lipid raft - Abstract
A large body of evidence from the past decade supports the existence of functional microdomains in membranes of animal and yeast cells, which play important roles in protein sorting, signal transduction, or infection by pathogens. They are based on the dynamic clustering of sphingolipids and cholesterol or ergosterol and are characterized by their insolubility, at low temperature, in nonionic detergents. Here we show that similar microdomains also exist in plant plasma membrane isolated from both tobacco leaves and BY2 cells. Tobacco lipid rafts were found to be greatly enriched in a sphingolipid, identified as glycosylceramide, as well as in a mixture of stigmasterol, sitosterol, 24-methylcholesterol, and cholesterol. Phospho- and glycoglycerolipids of the plasma membrane were largely excluded from lipid rafts. Membrane proteins were separated by one- and two-dimensional gel electrophoresis and identified by tandem mass spectrometry or use of specific antibody. The data clearly indicate that tobacco microdomains are able to recruit a specific set of the plasma membrane proteins and exclude others. We demonstrate the recruitment of the NADPH oxidase after elicitation by cryptogein and the presence of the small G protein NtRac5, a negative regulator of NADPH oxidase, in lipid rafts.
- Published
- 2004
50. StRemorin1.3 hampers Potato virus X TGBp1 ability to increase plasmodesmata permeability, but does not interfere with its silencing suppressor activity
- Author
-
Martin A. Mecchia, Artemis Perraki, Julien Gronnier, Véronique Germain, María Binaghi, Sébastien Mongrand, Sylvie German-Retana, Alicia M. Zelada, Emmanuelle Bayer, Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1, Consejo Nacional de Investigaciones Científicas y Técnicas, Biologie du fruit et pathologie (BFP), Université Sciences et Technologies - Bordeaux 1-Université Bordeaux Segalen - Bordeaux 2-Institut National de la Recherche Agronomique (INRA), ECOS-MINCyT, CONICET-PIP [11220110100715/12], Greek State Scholarship foundation, IKY, CONICET, EMBO, and Bordeaux imaging Center
- Subjects
0106 biological sciences ,[SDV]Life Sciences [q-bio] ,Remorin ,Agrobacterium ,PROTEIN ,01 natural sciences ,Biochemistry ,purl.org/becyt/ford/1 [https] ,Triple Gene Block protein 1 ,Structural Biology ,Tobacco mosaic virus ,Protein Isoforms ,Plant Proteins ,0303 health sciences ,Plasmodesmata ,GATING ,Potato virus X ,3. Good health ,Cell biology ,Protein Transport ,RNA silencing ,Potato virus Y ,Host-Pathogen Interactions ,RNA Interference ,CIENCIAS NATURALES Y EXACTAS ,Gene Expression Regulation, Viral ,Viral suppressor of RNA gene silencing ,Recombinant Fusion Proteins ,Otras Ciencias Biológicas ,Biophysics ,Plasmodesma ,Biology ,Permeability ,Virus ,PTGS ,ACTIN ,Ciencias Biológicas ,Viral Proteins ,03 medical and health sciences ,Tobacco ,Genetics ,Gene silencing ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,PLANTS ,purl.org/becyt/ford/1.6 [https] ,Molecular Biology ,Solanum tuberosum ,030304 developmental biology ,Membrane raft ,REMORIN ,TGBp1 ,Cell Biology ,DEGRADATION ,P19 ,Phosphoproteins ,biology.organism_classification ,Molecular biology ,TO-CELL MOVEMENT ,Potexvirus ,Microscopy, Fluorescence ,Plant membrane rafts ,REPLICATION ,Carrier Proteins ,010606 plant biology & botany - Abstract
TThe Triple Gene Block 1 (TGBp1) protein encoded by the Potato virus X is a multifunctional protein that acts as a suppressor of RNA silencing or facilitates the passage of virus from cell to cell by promoting the plasmodesmata opening. We previously showed that the membrane raft protein StRemorin1.3 is able to impair PVX infection. Here, we show that overexpressed StRemorin1.3 does not impair the silencing suppressor activity of TGBp1, but affects its ability to increase plasmodesmata permeability. A similar effect on plasmodesmata permeability was observed with other movement proteins, suggesting that REM is a general regulator of plasmodesmal size exclusion limit. These results add to our knowledge of the mechanisms underlying the StREM1.3 role in virus infection. Fil: Perraki, Artemis. Universite de Bordeaux; Francia. Centre National de la Recherche Scientifique; Francia Fil: Binaghi, Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Mecchia, Martin Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Gronnier, Julien. Universite de Bordeaux; Francia. Centre National de la Recherche Scientifique; Francia Fil: German Retana, Sylvie. Institut National de la Recherche Agronomique; Francia Fil: Mongrand, Sébastien. Universite de Bordeaux; Francia. Centre National de la Recherche Scientifique; Francia Fil: Bayer, Emmanuelle. Universite de Bordeaux; Francia. Centre National de la Recherche Scientifique; Francia Fil: Zelada, Alicia Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Germain, Véronique. Centre National de la Recherche Scientifique; Francia. Universite de Bordeaux; Francia
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.