Back to Search
Start Over
Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains
- Source :
- eLife, Vol 6 (2017)
- Publication Year :
- 2017
- Publisher :
- eLife Sciences Publications Ltd, 2017.
-
Abstract
- Plasma Membrane is the primary structure for adjusting to ever changing conditions. PM sub-compartmentalization in domains is thought to orchestrate signaling. Yet, mechanisms governing membrane organization are mostly uncharacterized. The plant-specific REMORINs are proteins regulating hormonal crosstalk and host invasion. REMs are the best-characterized nanodomain markers via an uncharacterized moiety called REMORIN C-terminal Anchor. By coupling biophysical methods, super-resolution microscopy and physiology, we decipher an original mechanism regulating the dynamic and organization of nanodomains. We showed that targeting of REMORINis independent of the COP-II-dependent secretory pathway and mediated by PI4P and sterol. REM-CA is an unconventional lipid-binding motif that confers nanodomain organization. Analyzes of REM-CA mutants by single particle tracking demonstrate that mobility and supramolecular organization are critical for immunity. This study provides a unique mechanistic insight into how the tight control of spatial segregation is critical in the definition of PM domain necessary to support biological function.
Details
- Language :
- English
- ISSN :
- 2050084X
- Volume :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- eLife
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.44672ff3eadd4d08814efe3fcfbde66c
- Document Type :
- article
- Full Text :
- https://doi.org/10.7554/eLife.26404