1. The $R$-process Alliance: Enrichment of $R$-process Elements in a Simulated Milky Way-like Galaxy
- Author
-
Hirai, Yutaka, Beers, Timothy C., Lee, Young Sun, Wanajo, Shinya, Roederer, Ian U., Tanaka, Masaomi, Chiba, Masashi, Saitoh, Takayuki R., Placco, Vinicius M., Hansen, Terese T., Ezzeddine, Rana, Frebel, Anna, Holmbeck, Erika M., and Sakari, Charli M.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Solar and Stellar Astrophysics - Abstract
We study the formation of stars with varying amounts of heavy elements synthesized by the rapid neutron-capture process ($r$-process) based on our detailed cosmological zoom-in simulation of a Milky Way-like galaxy with an $N$-body/smoothed particle hydrodynamics code, ASURA. Most stars with no overabundance in $r$-process elements, as well as the strongly $r$-process enhanced $r$-II stars ([Eu/Fe] $>+0.7$), are formed in dwarf galaxies accreted by the Milky Way within the 6 Gyr after the Big Bang. In contrast, over half of the moderately enhanced $r$-I stars ($+0.3 <$ [Eu/Fe] $\leq +0.7$) are formed in the main in-situ disk after 6 Gyr. Our results suggest that the fraction of $r$-I and $r$-II stars formed in disrupted dwarf galaxies is larger the higher their [Eu/Fe] is. Accordingly, the most strongly enhanced $r$-III stars ([Eu/Fe] $> +2.0$) are formed in accreted components. These results suggest that non-$r$-process-enhanced stars and $r$-II stars are mainly formed in low-mass dwarf galaxies that hosted either none or a single neutron star merger, while the $r$-I stars tend to form in the well-mixed in-situ disk. We compare our findings with high-resolution spectroscopic observations of $r$-process-enhanced metal-poor stars in the halo and dwarf galaxies, including those collected by the R-Process Alliance. We conclude that observed [Eu/Fe] and [Eu/Mg] ratios can be employed in chemical tagging of the Milky Way's accretion history., Comment: 16 pages, 11 figures, submitted to ApJ
- Published
- 2024