1. The neutron veto of the XENONnT experiment: Results with demineralized water
- Author
-
XENON Collaboration, Aprile, E., Aalbers, J., Abe, K., Maouloud, S. Ahmed, Althueser, L., Andrieu, B., Angelino, E., Martin, D. Antón, Arneodo, F., Baudis, L., Bazyk, M., Bellagamba, L., Biondi, R., Bismark, A., Boese, K., Brown, A., Bruno, G., Budnik, R., Cai, C., Capelli, C., Cardoso, J. M. R., Chávez, A. P. Cimental, Colijn, A. P., Conrad, J., Cuenca-García, J. J., D'Andrea, V., Garcia, L. C. Daniel, Decowski, M. P., Deisting, A., Di Donato, C., Di Gangi, P., Diglio, S., Eitel, K., Morabit, S. el, Elykov, A., Ferella, A. D., Ferrari, C., Fischer, H., Flehmke, T., Flierman, M., Fulgione, W., Fuselli, C., Gaemers, P., Gaior, R., Galloway, M., Gao, F., Ghosh, S., Giacomobono, R., Glade-Beucke, R., Grandi, L., Grigat, J., Guan, H., Guida, M., Gyorgy, P., Hammann, R., Higuera, A., Hils, C., Hoetzsch, L., Hood, N. F., Iacovacci, M., Itow, Y., Jakob, J., Joerg, F., Kaminaga, Y., Kara, M., Kavrigin, P., Kazama, S., Kobayashi, M., Koke, D., Kopec, A., Landsman, H., Lang, R. F., Levinson, L., Li, I., Li, S., Liang, S., Lin, Y. -T., Lindemann, S., Lindner, M., Liu, K., Liu, M., Loizeau, J., Lombardi, F., Long, J., Lopes, J. A. M., Luce, T., Ma, Y., Macolino, C., Mahlstedt, J., Mancuso, A., Manenti, L., Marignetti, F., Undagoitia, T. Marrodán, Martens, K., Masbou, J., Masson, E., Mastroianni, S., Melchiorre, A., Merz, J., Messina, M., Michael, A., Miuchi, K., Molinario, A., Moriyama, S., Morá, K., Mosbacher, Y., Murra, M., Müller, J., Ni, K., Oberlack, U., Paetsch, B., Pan, Y., Pellegrini, Q., Peres, R., Peters, C., Pienaar, J., Pierre, M., Plante, G., Pollmann, T. R., Principe, L., Qi, J., Qin, J., García, D. Ramírez, Rajado, M., Singh, R., Sanchez, L., Santos, J. M. F. dos, Sarnoff, I., Sartorelli, G., Schreiner, J., Schulte, P., Eißing, H. Schulze, Schumann, M., Lavina, L. Scotto, Selvi, M., Semeria, F., Shagin, P., Shi, S., Shi, J., Silva, M., Simgen, H., Szyszka, C., Takeda, A., Takeuchi, Y., Tan, P. -L., Thers, D., Toschi, F., Trinchero, G., Tunnell, C. D., Tönnies, F., Valerius, K., Vecchi, S., Vetter, S., Solar, F. I. Villazon, Volta, G., Weinheimer, C., Weiss, M., Wenz, D., Wittweg, C., Wu, V. H. S., Xing, Y., Xu, D., Xu, Z., Yamashita, M., Yang, L., Ye, J., Yuan, L., Zavattini, G., and Zhong, M.
- Subjects
Physics - Instrumentation and Detectors ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,High Energy Physics - Experiment - Abstract
Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equipped with a novel gadolinium-doped water Cherenkov detector, which encloses the xenon dual-phase time projection chamber (TPC). The neutron veto (NV) tags neutrons via their capture on gadolinium or hydrogen, which release $\gamma$-rays that are subsequently detected as Cherenkov light. In this work, we present the key features and the first results of the XENONnT NV when operated with demineralized water in the initial phase of the experiment. Its efficiency for detecting neutrons is $(82\pm 1)\,\%$, the highest neutron detection efficiency achieved in a water Cherenkov detector. This enables a high efficiency of $(53\pm 3)\,\%$ for the tagging of WIMP-like neutron signals, inside a tagging time window of $250\,\mathrm{\mu s}$ between TPC and NV, leading to a livetime loss of $1.6\,\%$ during the first science run of XENONnT.
- Published
- 2024