1. Representing prefix and border tables: results on enumeration
- Author
-
Julien Clément, Laura Giambruno, Equipe AMACC - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU), Dipartimento di Matematica e Applicazioni [Palermo], Università di Palermo, ANR-09-BLAN-0011,BOOLE(2009), and ANR-13-BS02-0003,DynA3S,Dynamique des algorithmes du pgcd : une approche Algorithmique, Analytique, Arithmétique et Symbolique(2013)
- Subjects
Discrete mathematics ,Sequence ,Image (category theory) ,010102 general mathematics ,String (computer science) ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,Inverse ,Order (ring theory) ,[MATH.MATH-IT]Mathematics [math]/Information Theory [math.IT] ,0102 computer and information sciences ,Data_CODINGANDINFORMATIONTHEORY ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,01 natural sciences ,Upper and lower bounds ,Computer Science Applications ,Prefix ,Mathematics (miscellaneous) ,010201 computation theory & mathematics ,[INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT] ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] ,Combinatorial class ,0101 mathematics ,Mathematics - Abstract
For some text algorithms, the real measure for the complexity analysis is not the string itself but its structure stored in its prefix table or equivalently border table. In this paper, we define the combinatorial class of prefix lists, namely a sequence of integers together with their size, and an injection ψ from the class of prefix tables to the class of prefix lists. We call a valid prefix list the image by ψ of a prefix table. In particular, we describe algorithms converting a prefix/border table to a prefix list and inverse linear algorithms from computing from a prefix list L = ψ(P) two words respectively in a minimal size alphabet and on a maximal size alphabet with P as prefix table. We then give a new upper bound on the number of prefix tables for strings of length n (on any alphabet) which is of order (1 + ϕ)n (with $\varphi=\frac{1+\sqrt{5}}{2}$ the golden mean) and also present a corresponding lower bound.
- Published
- 2017
- Full Text
- View/download PDF