Back to Search Start Over

Representing prefix and border tables: results on enumeration

Authors :
Julien Clément
Laura Giambruno
Equipe AMACC - Laboratoire GREYC - UMR6072
Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC)
Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)
Dipartimento di Matematica e Applicazioni [Palermo]
Università di Palermo
ANR-09-BLAN-0011,BOOLE(2009)
ANR-13-BS02-0003,DynA3S,Dynamique des algorithmes du pgcd : une approche Algorithmique, Analytique, Arithmétique et Symbolique(2013)
Source :
Mathematical Structures in Computer Science, Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2017, 27 (02), pp.257-276. ⟨10.1017/S0960129515000146⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

For some text algorithms, the real measure for the complexity analysis is not the string itself but its structure stored in its prefix table or equivalently border table. In this paper, we define the combinatorial class of prefix lists, namely a sequence of integers together with their size, and an injection ψ from the class of prefix tables to the class of prefix lists. We call a valid prefix list the image by ψ of a prefix table. In particular, we describe algorithms converting a prefix/border table to a prefix list and inverse linear algorithms from computing from a prefix list L = ψ(P) two words respectively in a minimal size alphabet and on a maximal size alphabet with P as prefix table. We then give a new upper bound on the number of prefix tables for strings of length n (on any alphabet) which is of order (1 + ϕ)n (with $\varphi=\frac{1+\sqrt{5}}{2}$ the golden mean) and also present a corresponding lower bound.

Details

Language :
English
ISSN :
09601295 and 14698072
Database :
OpenAIRE
Journal :
Mathematical Structures in Computer Science, Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2017, 27 (02), pp.257-276. ⟨10.1017/S0960129515000146⟩
Accession number :
edsair.doi.dedup.....831ddc435c8f536a98e599504ce169d2
Full Text :
https://doi.org/10.1017/S0960129515000146⟩