72 results on '"Jean-Luc Rouvière"'
Search Results
2. Growth of zinc-blende GaN on muscovite mica by molecular beam epitaxy
- Author
-
Rémy Vermeersch, Edith Bellet-Amalric, Núria Garro, Nathaniel Feldberg, Fabrice Donatini, Ana Cros, Bruno Gayral, Jean-Luc Rouvière, Catherine Bougerol, Saül Garcia-Orrit, Bruno Daudin, Maria José Recio Carretero, Nanophysique et Semiconducteurs (NPSC), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Optique & Microscopies (NEEL - POM), Nanophysique et Semiconducteurs (NEEL - NPSC), Modélisation et Exploration des Matériaux (MEM), Institut Universitari de Ciencia dels Materials (ICMUV), and Universitat de València (UV)
- Subjects
[PHYS]Physics [physics] ,Materials science ,Mechanical Engineering ,Muscovite ,Nucleation ,Bioengineering ,Cathodoluminescence ,02 engineering and technology ,General Chemistry ,engineering.material ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Epitaxy ,01 natural sciences ,0104 chemical sciences ,Crystallography ,Mechanics of Materials ,Transmission electron microscopy ,engineering ,General Materials Science ,Mica ,Electrical and Electronic Engineering ,0210 nano-technology ,Wurtzite crystal structure ,Molecular beam epitaxy - Abstract
The mechanisms of plasma-assisted molecular beam epitaxial growth of GaN on muscovite mica were investigated. Using a battery of techniques, including scanning and transmission electron microscopy, atomic force microscopy, cathodoluminescence, Raman spectroscopy and x-ray diffraction, it was possible to establish that, in spite of the lattice symmetry mismatch, GaN grows in epitaxial relationship with mica, with the [11–20] GaN direction parallel to [010] direction of mica. GaN layers could be easily detached from the substrate via the delamination of the upper layers of the mica itself, discarding the hypothesis of a van der Waals growth mode. Mixture of wurtzite (hexagonal) and zinc blende (ZB) (cubic) crystallographic phases was found in the GaN layers with ratios highly dependent on the growth conditions. Interestingly, almost pure ZB GaN epitaxial layers could be obtained at high growth temperature, suggesting the existence of a specific GaN nucleation mechanism on mica and opening a new way to the growth of the thermodynamically less stable ZB GaN phase.
- Published
- 2021
- Full Text
- View/download PDF
3. The role of surface diffusion in the growth mechanism of III-nitride nanowires and nanotubes
- Author
-
Jean-Luc Rouvière, Bruno Daudin, Ana Cros, Martien Den Hertog, Alexandra-Madalina Siladie, Eric Robin, Marion Gruart, Catherine Bougerol, Benedikt Haas, Maria-José Recio-Carretero, Núria Garro, Nanophysique et Semiconducteurs (NPSC), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Nanophysique et Semiconducteurs (NEEL - NPSC), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut Universitari de Ciencia dels Materials (ICMUV), Universitat de València (UV), Matériaux, Rayonnements, Structure (MRS), Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Surface diffusion ,Materials science ,Mechanical Engineering ,Diffusion ,Superlattice ,Nucleation ,Nanowire ,Bioengineering ,02 engineering and technology ,General Chemistry ,Nitride ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Catalysis ,Mechanics of Materials ,Chemical physics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,Electrical and Electronic Engineering ,0210 nano-technology ,Molecular beam epitaxy - Abstract
The spontaneous growth of GaN nanowires (NWs) in absence of catalyst is controlled by the Ga flux impinging both directly on the top and on the side walls and diffusing to the top. The presence of diffusion barriers on the top surface and at the frontier between the top and the sidewalls, however, causes an inhomogeneous distribution of Ga adatoms at the NW top surface resulting in a GaN accumulation in its periphery. The increased nucleation rate in the periphery promotes the spontaneous formation of superlattices in InGaN and AlGaN NWs. In the case of AlN NWs, the presence of Mg can enhance the otherwise short Al diffusion length along the sidewalls inducing the formation of AlN nanotubes.
- Published
- 2020
- Full Text
- View/download PDF
4. Full characterization and modeling of graded interfaces in a high lattice-mismatch axial nanowire heterostructure
- Author
-
Moïra Hocevar, Petr Stepanov, Frank Glas, D. V. Beznasyuk, Jean-Luc Rouvière, Julien Claudon, Marcel A. Verheijen, Nanophysique et Semiconducteurs (NPSC), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Eindhoven University of Technology [Eindhoven] (TU/e), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Eurofins Materials Science Netherlands, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Nanophysique et Semiconducteurs (NEEL - NPSC), ANR-16-CE09-0010,QDOT,Transducteurs optomécaniques à base de boites quantiques(2016), Plasma & Materials Processing, Photonics and Semiconductor Nanophysics, and Atomic scale processing
- Subjects
Electron mobility ,Materials science ,Physics and Astronomy (miscellaneous) ,Nanowire ,FOS: Physical sciences ,Physics::Optics ,02 engineering and technology ,Parameter space ,01 natural sciences ,Condensed Matter::Materials Science ,0103 physical sciences ,General Materials Science ,010306 general physics ,High-resolution transmission electron microscopy ,[PHYS]Physics [physics] ,Condensed Matter - Materials Science ,business.industry ,Materials Science (cond-mat.mtrl-sci) ,Heterojunction ,Radius ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Piezoelectricity ,Characterization (materials science) ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,0210 nano-technology ,business - Abstract
Controlling the strain level in nanowire heterostructures is critical for obtaining coherent interfaces of high crystalline quality and for the setting of functional properties such as photon emission, carrier mobility or piezoelectricity. In a nanowire axial heterostructure featuring a sharp interface, strain is set by the materials lattice mismatch and the nanowire radius. Here, we show that introducing a graded interface in nanowire heterostructures offers an additional parameter to control strain. For a given interface length and lattice mismatch, we first derive theoretically the maximum nanowire radius below which coherent growth is possible. We validate these findings by growing and characterizing various In(Ga)As/GaAs nanowire heterostructures with graded interfaces. Furthermore, we perform a complete chemical and structural characterization of the interface by combining energy-dispersive X-ray spectroscopy and high resolution transmission electron microscopy. In the case of coherent growth, we directly observe that the mismatch strain relaxes elastically on the side walls of the nanowire around the interface area, while the core of the nanowire remains partially strained. Moreover, our experimental data show good agreement with finite element calculations. This analysis confirms in particular that mechanical strain is largely reduced by interface grading. Overall, our work extends the parameter space for the design of nanowire heterostructures, thus opening new opportunities for nanowire optoelectronics., Comment: 8 pages, 6 figures
- Published
- 2020
- Full Text
- View/download PDF
5. Influence of milling on structural and microstructural properties of cerium oxide: Consequence of the surface activation on the dissolution kinetics in nitric acid
- Author
-
Hanako Okuno, Thibaud Delahaye, Pascal Roussel, Gilles Leturcq, Julia Hidalgo, and Jean-Luc Rouvière
- Subjects
Cerium oxide ,Metals and Alloys ,Oxide ,chemistry.chemical_element ,02 engineering and technology ,Activation energy ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Industrial and Manufacturing Engineering ,0104 chemical sciences ,chemistry.chemical_compound ,Cerium ,chemistry ,Chemical engineering ,Leaching (chemistry) ,Specific surface area ,Materials Chemistry ,Crystallite ,0210 nano-technology ,Dissolution - Abstract
Ceria (CeO2) is known as a refractory oxide for dissolution in nitric acid, since the leaching reaction is thermodynamically unfavorable, except when it is complexed by nitrates but with very slow kinetics. To enhance dissolution, surface activation was achieved using high-energy milling. With the mechanically-activated cerium oxide, leaching in nitric acid reached 36%. The mechanical activation of the solid caused structural and microstructural changes (particle size, specific surface area, crystallite size, lattice strain, defects…). After one hour, the cleavage induced by energetic milling generated two populations: nanoparticles and grains containing defects like dislocations. Beside crystallite size and micro-strain evaluation using X-ray diffraction, cerium oxidation state was measured by Electron Energy-Loss Spectroscopy (EELS) analyses while linear defects were pictured by Transmission Electron Microscopy (TEM) observations. On one hand, it was found that the nanoparticles formed during milling process greatly enhance the dissolution reaction by the creation of Ce3+ thin layers of a few nanometer depth on their surfaces. On the other hand, it is shown that dislocations represent another way to increase the kinetics by activation energy. In conclusion, dissolution rate's growth can be due to different parameters like the leaching of the smallest particles, the presence of reduced oxidation state on nanoparticles and some highly reactive sites concentrating structural defects such as dislocation nodes. Finally, as ceria is also well known to be a safe analogue of PuO2, especially for dissolution studies, a solution for improving the dissolution of ceria would probably also be useful for dissolving the oxides rich in Pu.
- Published
- 2022
- Full Text
- View/download PDF
6. Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain
- Author
-
Yifei Meng, Jian-Min Zuo, Jean-Luc Rouvière, Ji-Hwan Kwon, Honggyu Kim, University of Illinois System, Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
compound semiconductors ,Nanostructure ,Materials science ,Superlattice ,02 engineering and technology ,Electronic structure ,01 natural sciences ,Biochemistry ,atomic vacancies ,Ion ,Condensed Matter::Materials Science ,Lattice (order) ,Vacancy defect ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,General Materials Science ,ComputingMilieux_MISCELLANEOUS ,defects ,010302 applied physics ,[PHYS]Physics [physics] ,Condensed Matter::Quantum Gases ,Crystallography ,Condensed matter physics ,business.industry ,Condensed Matter::Other ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Research Papers ,strained-layer superlattices ,Semiconductor ,QD901-999 ,Compound semiconductor ,0210 nano-technology ,business ,properties of solids - Abstract
Atomic vacancies in complex crystals can be determined by atomic-resolution strain mapping at picometre precision using scanning transmission electron microscopy. The method is applied to InAs/GaSb superlattices., Determining vacancy in complex crystals or nanostructures represents an outstanding crystallographic problem that has a large impact on technology, especially for semiconductors, where vacancies introduce defect levels and modify the electronic structure. However, vacancy is hard to locate and its structure is difficult to probe experimentally. Reported here are atomic vacancies in the InAs/GaSb strained-layer superlattice (SLS) determined by atomic-resolution strain mapping at picometre precision. It is shown that cation and anion vacancies in the InAs/GaSb SLS give rise to local lattice relaxations, especially the nearest atoms, which can be detected using a statistical method and confirmed by simulation. The ability to map vacancy defect-induced strain and identify its location represents significant progress in the study of vacancy defects in compound semiconductors.
- Published
- 2018
- Full Text
- View/download PDF
7. Joint de grains dans le silicium et suite du nombre d'argent
- Author
-
Jean-Luc Rouvière, Nina Gunkelmann, Damien Caliste, F. Lançon, Laboratory of Atomistic Simulation (LSIM ), Modélisation et Exploration des Matériaux (MEM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Clausthal University of Technology (TU Clausthal), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Sequence ,Fibonacci number ,Materials science ,Condensed matter physics ,Silicon ,chemistry.chemical_element ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Tilt (optics) ,chemistry ,Silver ratio ,0103 physical sciences ,Golden ratio ,Grain boundary ,010306 general physics ,0210 nano-technology ,Focus (optics) - Abstract
International audience; A scheme is proposed to solve the structure of incommensurate interfaces, starting from high-resolution images of electron microscopy, supplemented by adapted simulation techniques and complemented by theoretical tools. Direct silicon bonding is a way to produce artificial interfaces, in particular incommensurate ones. We focus on a technology-driven tilt grain boundary in silicon. While the Fibonacci sequence, linked to the golden ratio, is a prototype of the quasicrystalline structures, a silver-ratio sequence allows us to analyze this incommensurate interface. The four-fold coordination of the Si atoms is kept at the interface.; Une procédure est proposée pour résoudre la structure d'interfaces incommensurables, en partant d'images de microscopie électronique de haute résolution, en complétant avec des techniques de simulation adaptées et en parachevant avec des outils théoriques. Le collage de plaques de silicium est une manière de créer des interfaces artificielles, en particulier de type incommensurable. Nous nous concentrons sur un joint de grains de flexion dans le silicium, joint ayant un intérêt technologique. Alors que la suite de Fibonacci, liée au nombre d'or, est un prototype des structures quasi-cristallines, la suite du nombre d'argent nous permet d'analyser cette interface incommensurable. La tétravalence des atomes de silicium est conservée à l'interface.
- Published
- 2019
- Full Text
- View/download PDF
8. Polarity conversion of GaN nanowires grown by plasma-assisted molecular beam epitaxy
- Author
-
Gwénolé Jacopin, Jean-Luc Rouvière, Bruno Daudin, Ana Cros, Núria Garro, Alexandre Concordel, Bruno Gayral, Semi-conducteurs à large bande interdite (SC2G ), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Nanophysique et Semiconducteurs (NPSC), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Univ Valencia, Inst Ciencia Mat, E-46980 Paterna, Valencia, Spain, Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Semi-conducteurs à large bande interdite (NEEL - SC2G), and Universitat Politècnica de València (UPV)
- Subjects
010302 applied physics ,Kelvin probe force microscope ,Polarity reversal ,Materials science ,Physics and Astronomy (miscellaneous) ,Polarity (physics) ,business.industry ,Nanowire ,Cathodoluminescence ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Isotropic etching ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Nanolithography ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,business ,Molecular beam epitaxy - Abstract
International audience; It is demonstrated that the N-polarity of GaN nanowires (NWs) spontaneously nucleated on Si (111) by molecular beam epitaxy can be reversed by intercalation of an Al-or Ga-oxynitride thin layer. The polarity change has been assessed by a combination of chemical etching, Kelvin probe force microscopy, cathodo-and photoluminescence spectroscopy and transmission electron microscopy experiments. Cathodoluminescence of the Ga-polar NW section exhibits a higher intensity in the band edge region, consistent with a reduced incorporation of chemical impurities. The polarity reversal method we propose opens the path to the integration of optimized metal-polar NW devices on any kind of substrates.
- Published
- 2019
- Full Text
- View/download PDF
9. In Situ Transmission Electron Microscopy Analysis of Aluminum–Germanium Nanowire Solid-State Reaction
- Author
-
C. Zeiner, Martien Den Hertog, Khalil El Hajraoui, Eric Robin, Alois Lugstein, Jean-Luc Rouvière, Stéphanie Kodjikian, Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Vienna University of Technology (TU Wien), Silicon Nanoelectronics Photonics and Structures (SiNaps), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Matériaux, Rayonnements, Structure [?-2015] (MRS [?-2015]), Institut Néel [2007-2015] (NEEL [2007-2015]), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude des Matériaux par Microscopie Avancée [?-2019] (LEMMA [?-2019]), Institute of Solid State Physics, Technical University of Vienna (TUW), Technical University of Vienna [Vienna] (TU WIEN), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Matériaux, Rayonnements, Structure (MRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Ge nanowire ,Materials science ,Analytical chemistry ,Energy-dispersive X-ray spectroscopy ,Nanowire ,chemistry.chemical_element ,Bioengineering ,Germanium ,02 engineering and technology ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,aluminum contact ,Reaction rate ,energy dispersive X-ray spectroscopy ,General Materials Science ,Diffusion (business) ,ComputingMilieux_MISCELLANEOUS ,in situ transmission electron microscopy ,Surface diffusion ,solid state reaction ,Mechanical Engineering ,diffusion ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electrical contacts ,chemistry ,Electron diffraction ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology - Abstract
International audience; To fully exploit the potential of semiconduct-ing nanowires for devices, high quality electrical contacts are of paramount importance. This work presents a detailed in situ transmission electron microscopy (TEM) study of a very promising type of NW contact where aluminum metal enters the germanium semiconducting nanowire to form an extremely abrupt and clean axial metal−semiconductor interface. We study this solid-state reaction between the aluminum contact and germanium nanowire in situ in the TEM using two different local heating methods. Following the reaction interface of the intrusion of Al in the Ge nanowire shows that at temperatures between 250 and 330°C the position of the interface as a function of time is well fitted by a square root function, indicating that the reaction rate is limited by a diffusion process. Combining both chemical analysis and electron diffraction we find that the Ge of the nanowire core is completely exchanged by the entering Al atoms that form a monocrystalline nanowire with the usual face-centered cubic structure of Al, where the nanowire dimensions are inherited from the initial Ge nanowire. Model-based chemical mapping by energy dispersive X-ray spectroscopy (EDX) characterization reveals the three-dimensional chemical cross-section of the transformed nanowire with an Al core, surrounded by a thin pure Ge (∼2 nm), Al 2 O 3 (∼3 nm), and Ge containing Al 2 O 3 (∼1 nm) layer, respectively. The presence of Ge containing shells around the Al core indicates that Ge diffuses back into the metal reservoir by surface diffusion, which was confirmed by the detection of Ge atoms in the Al metal line by EDX analysis. Fitting a diffusion equation to the kinetic data allows the extraction of the diffusion coefficient at two different temperatures, which shows a good agreement with diffusion coefficients from literature for self-diffusion of Al.
- Published
- 2019
- Full Text
- View/download PDF
10. In Situ Transmission Electron Microscopy Analysis of Copper–Germanium Nanowire Solid-State Reaction
- Author
-
Khalil El hajraoui, Eric Robin, Clemens Zeiner, Alois Lugstein, Stéphanie Kodjikian, Jean-Luc Rouvière, Martien Den Hertog, Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institute of Solid State Physics, Technical University of Vienna (TUW), Vienna University of Technology (TU Wien), Optique et microscopies (POM), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ANR-12-JS10-0002,COSMOS,Correlation du microscopie électronique en transmission avec des mesures optique et électrique effectués sur le même nanofils unique(2012), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Technical University of Vienna [Vienna] (TU WIEN), Optique et microscopies (POM ), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA), Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Optique & Microscopies (NEEL - POM), and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
010302 applied physics ,[PHYS]Physics [physics] ,Mechanical Engineering ,In-situ Transmission Electron Microscopy ,Surface Diffusion ,Ge nanowires ,Bioengineering ,02 engineering and technology ,General Chemistry ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Energy Dispersive X-ray Spectroscopy ,0103 physical sciences ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Solid-state reaction - Abstract
International audience; A promising approach of making high quality contacts on semiconductors is a silicidation (for silicon) or germanidation (for germanium) annealing process, where the metal enters the semiconductor and creates a low resistance intermetallic phase. In a nanowire, this process allows one to fabricate axial heterostructures with dimensions depending only on the control and understanding of the thermally induced solid-state reaction. In this work, we present the first observation of both germanium and copper diffusion in opposite directions during the solid-state reaction of Cu contacts on Ge nanowires using in situ Joule heating in a transmission electron microscope. The in situ observations allow us to follow the reaction in real time with nanometer spatial resolution. We follow the advancement of the reaction interface over time, which gives precious information on the kinetics of this reaction. We combine the kinetic study with ex situ characterization using model-based energy dispersive X-ray spectroscopy (EDX) indicating that both Ge and Cu diffuse at the surface of the created Cu3Ge segment and the reaction rate is limited by Ge surface diffusion at temperatures between 360 and 600 °C. During the reaction, germanide crystals typically protrude from the reacted NW part. However, their formation can be avoided using a shell around the initial Ge NW. Ha direct Joule heating experiments show slower reaction speeds indicating that the reaction can be initiated at lower temperatures. Moreover, they allow combining electrical measurements and heating in a single contacting scheme, rendering the Cu–Ge NW system promising for applications where very abrupt contacts and a perfectly controlled size of the semiconducting region is required. Clearly, in situ TEM is a powerful technique to better understand the reaction kinetics and mechanism of metal–semiconductor phase formation.
- Published
- 2019
- Full Text
- View/download PDF
11. Direct comparison of off-axis holography and differential phase contrast for the mapping of electric fields in semiconductors by transmission electron microscopy
- Author
-
David Cooper, Remy Berthier, Jean-Luc Rouvière, Victor Boureau, Benedikt Haas, Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), European Project: 306535,EC:FP7:ERC,ERC-2012-StG_20111012,HOLOVIEW(2012), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire d'Etude des Matériaux par Microscopie Avancée [?-2019] (LEMMA [?-2019]), and STMicroelectronics [Crolles] (ST-CROLLES)
- Subjects
Microscope ,Materials science ,Superlattice ,Holography ,02 engineering and technology ,01 natural sciences ,Electron holography ,[SPI.MAT]Engineering Sciences [physics]/Materials ,law.invention ,[SPI]Engineering Sciences [physics] ,Optics ,law ,Electric field ,0103 physical sciences ,Differential phase contrast ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Instrumentation ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,business.industry ,Scattering ,021001 nanoscience & nanotechnology ,Field mapping ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Semiconductor ,Semiconductors ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,0210 nano-technology ,business ,Transmission electron microscopy ,Voltage - Abstract
International audience; To provide a direct comparison, off-axis holography and differential phase contrast have been performed using the same microscope on the same specimens for the measurement of active dopants and piezoelectric fields. The sensitivity and spatial resolution of the two techniques have been assessed through the study of a simple silicon p-n junction observed at different bias voltages applied in-situ. For an evaluation of limitations and artefacts of the methods in more complicated systems a silicon pMOS device and an InGaN/GaN superlattice with 2.2-nm In0.15Ga0.85N quantum wells is investigated. We demonstrate the effects of dynamical scattering on the electric field measurements in the presence of local strain-induced sample tilts and its dependence on parameters like the convergence angle.
- Published
- 2019
- Full Text
- View/download PDF
12. Graphene as a Mechanically Active, Deformable Two-Dimensional Surfactant
- Author
-
Valérie Guisset, Sergio Vlaic, Loïc Huder, Claude Chapelier, Andrea Locatelli, Benjamin Canals, Laurence Magaud, Jean-Luc Rouvière, Alexandre Artaud, Benitos Santos, Vincent T. Renard, Philippe David, Amina Kimouche, Johann Coraux, Nicolas Rougemaille, Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Micro et NanoMagnétisme (NEEL - MNM), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Systèmes hybrides de basse dimensionnalité (NEEL - HYBRID), Laboratoire de Transport Electronique Quantique et Supraconductivité (LaTEQS), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Elettra Sincrotrone Trieste, Epitaxie et couches minces (NEEL- EpiCM), Théorie de la Matière Condensée (NEEL - TMC), ANR-10-BLAN-1019,NMGEM,Nanomagnétisme sur Graphène Epitaxié sur Métaux(2010), ANR-12-BS10-0004,NANOCELLS,Cellules ordonnées – une nouvelle phase de carbone(2012), European Project: 246073,EC:FP7:NMP,FP7-NMP-2009-SMALL-3,GRENADA(2011), Micro et NanoMagnétisme (MNM ), Systèmes hybrides de basse dimensionnalité (HYBRID), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Epitaxie et couches minces (EpiCM ), and Théorie de la Matière Condensée (TMC )
- Subjects
Materials science ,FOS: Physical sciences ,Crystal growth ,02 engineering and technology ,01 natural sciences ,law.invention ,Metal ,law ,0103 physical sciences ,Molecule ,General Materials Science ,Kinetic Monte Carlo ,Physical and Theoretical Chemistry ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Condensed Matter - Materials Science ,Graphene ,Elastic energy ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,Covalent bond ,Chemical physics ,visual_art ,visual_art.visual_art_medium ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Scanning tunneling microscope ,0210 nano-technology - Abstract
In crystal growth, surfactants are additive molecules used in dilute amount or as dense, permeable layers to control surface morphologies. Here, we investigate the properties of a strikingly different surfactant: a two-dimensional and covalent layer with close atomic packing, graphene. Using in situ, real time electron microscopy, scanning tunneling microscopy, kinetic Monte Carlo simulations, and continuum mechanics calculations, we reveal why metallic atomic layers can grow in a two-dimensional manner below an impermeable graphene membrane. Upon metal growth, graphene dynamically opens nanochannels called wrinkles, facilitating mass transport, while at the same time storing and releasing elastic energy via lattice distortions. Graphene thus behaves as a mechanically active, deformable surfactant. The wrinkle-driven mass transport of the metallic layer intercalated between graphene and the substrate is observed for two graphene-based systems, characterized by different physico-chemical interactions, between graphene and the substrate, and between the intercalated material and graphene. The deformable surfactant character of graphene that we unveil should then apply to a broad variety of species, opening new avenues for using graphene as a two-dimensional surfactant forcing the growth of flat films, nanostructures and unconventional crystalline phases.
- Published
- 2018
- Full Text
- View/download PDF
13. High-precision deformation mapping in finFET transistors with two nanometre spatial resolution by precession electron diffraction
- Author
-
Shogo Mochizuki, Nicolas Bernier, Yun-Yu Wang, David Cooper, Anita Madan, Jean-Luc Rouvière, Weihao Weng, and Hemanth Jagannathan
- Subjects
010302 applied physics ,Diffraction ,Materials science ,Physics and Astronomy (miscellaneous) ,business.industry ,Nanoscale Science and Technology ,02 engineering and technology ,Deformation (meteorology) ,Blanket ,021001 nanoscience & nanotechnology ,01 natural sciences ,Condensed Matter::Materials Science ,Optics ,0103 physical sciences ,Precession ,Precession electron diffraction ,Nanometre ,Wafer ,0210 nano-technology ,business ,Image resolution - Abstract
Precession electron diffraction has been used to systematically measure the deformation in Si/SiGe blanket films and patterned finFET test structures grown on silicon-on-insulator type wafers. Deformation maps have been obtained with a spatial resolution of 2.0 nm and a precision of ±0.025%. The measured deformation by precession diffraction for the blanket films has been validated by comparison to energy dispersive x-ray spectrometry, X-Ray diffraction, and finite element simulations. We show that although the blanket films remain biaxially strained, the patterned fin structures are fully relaxed in the crystallographic planes that have been investigated. We demonstrate that precession diffraction is a viable deformation mapping technique that can be used to provide useful studies of state-of-the-art electronic devices.
- Published
- 2017
14. High quality epitaxial fluorine-doped SnO2 films by ultrasonic spray pyrolysis: Structural and physical property investigation
- Author
-
Shan-Ting Zhang, Hervé Roussel, Daniel Bellet, Andreas Klein, Laetitia Rapenne, Vincent Consonni, Jean-Luc Rouvière, David Muñoz-Rojas, Etienne Pernot, Laboratoire des matériaux et du génie physique (LMGP ), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
010302 applied physics ,Materials science ,Mechanical Engineering ,Doping ,Nanotechnology ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Tin oxide ,Epitaxy ,01 natural sciences ,7. Clean energy ,Chemical engineering ,Mechanics of Materials ,Rutile ,0103 physical sciences ,lcsh:TA401-492 ,Precession electron diffraction ,lcsh:Materials of engineering and construction. Mechanics of materials ,General Materials Science ,Crystallite ,Thin film ,0210 nano-technology ,Molecular beam epitaxy - Abstract
International audience; • Epitaxial F-doped SnO2 (FTO) films are deposited on (110) rutile TiO2 for the first time using ultrasonic spray pyrolysis. • Epitaxial FTO film is of high structural quality with mosaic domains showing a narrow distribution of less than 0.5°. • Strain map at TiO2/FTO interface reveals the first 22 nm in FTO responsible for in-terfacial and secondary strain relaxation. Despite its wide use in the display and photovoltaic industries, fluorine-doped tin oxide (F:SnO 2 , FTO) has been studied only in its polycrystalline form. In this work, we report on the first growth of epitaxial FTO thin film by ultrasonic spray pyrolysis-a simple chemical deposition method-and we reveal the structure-property interplay by investigating in details its growth, morphology and strain/defects. Epitaxial FTO films are successfully grown on (110) rutile TiO 2 single crystals and form mosaic domains with an out-of-plane distribution smaller than 0.5°, showing high structural quality comparable to epitaxial films prepared by molecular beam epitaxy and pulsed-laser deposition. Owing to the large lattice mismatch with rutile TiO 2 , the FTO film develops significant structural defects to release the epitaxial strain and is consequently nearly fully relaxed with a slight residual strain of 0.1-0.2%. With the help of an innovative nano-beam precession electron diffraction technique, the strain distribution is mapped at the TiO 2 /FTO interface, from which we identify the interfacial and secondary strain relaxation taking place mainly in the first 22 nm in the FTO film. The Hall-mobility of the epitaxial FTO films is close to the state-of-the-art and expected to improve further at lower doping concentrations.
- Published
- 2017
- Full Text
- View/download PDF
15. The Measurement of Strain, Chemistry and Electric Fields by STEM based Techniques
- Author
-
Benedikt Haas, Nicolas Bernier, David K. C. Cooper, Michael G. Williamson, Eric Robin, and Jean-Luc Rouvière
- Subjects
010302 applied physics ,Chemical physics ,Chemistry ,Electric field ,0103 physical sciences ,Analytical chemistry ,02 engineering and technology ,021001 nanoscience & nanotechnology ,0210 nano-technology ,01 natural sciences ,Instrumentation - Published
- 2017
- Full Text
- View/download PDF
16. Peak separation method for sub-lattice strain analysis at atomic resolution: Application to InAs/GaSb superlattice
- Author
-
Yifei Meng, Honggyu Kim, Jian-Min Zuo, Jean-Luc Rouvière, University of Illinois System, Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), University of Illinois at Urbana-Champaign [Urbana], Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Diffraction ,Materials science ,Superlattice ,Analytical chemistry ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,01 natural sciences ,Molecular physics ,Ion ,Lattice strain ,Structural Biology ,Atomic resolution ,0103 physical sciences ,General Materials Science ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,[PHYS]Physics [physics] ,Condensed Matter - Materials Science ,Strain (chemistry) ,Materials Science (cond-mat.mtrl-sci) ,Cell Biology ,021001 nanoscience & nanotechnology ,Separation method ,0210 nano-technology ,Layer (electronics) - Abstract
We report on a direct measurement of cation and anion sub-lattice strain in an InAs/GaSb type-II strained layer superlattice (T2SLs) using atomic resolution Z-contrast imaging and advanced image processing. Atomic column positions in InAs and GaSb are determined by separating the cation and anion peak intensities. Analysis of the InAs/GaSb T2SLs reveals the compressive strain in the nominal GaSb layer and tensile strain at interfaces between constituent layers, which indicate In incorporation into the nominal GaSb layer and the formation of GaAs like interfaces, respectively. The results are compared with the model-dependent X-ray diffraction measurements in terms of interfacial chemical intermixing and strain. Together, these techniques provide a robust measurement of atomic-scale strain which is vital to determine T2SL properties., Comment: 15 pages, double spaced, 7 figures
- Published
- 2017
- Full Text
- View/download PDF
17. Strain Measurement with Nanometre Resolution by Transmission Electron Microscopy
- Author
-
David Cooper and Jean-Luc Rouvière
- Subjects
Materials science ,Silicon ,business.industry ,Scanning electron microscope ,General Engineering ,Holography ,chemistry.chemical_element ,Dark field microscopy ,Electron holography ,law.invention ,Optics ,Lattice constant ,Electron diffraction ,chemistry ,Transmission electron microscopy ,law ,business - Abstract
Strain is routinely used in state-of-the-art semiconductor devices in order to improve their electrical performance. Here we present experimental strain measurements obtained by different transmission electron microscopy (TEM) based techniques. Dark field electron holography, nanobeam electron diffraction (NBED) and high angle annular dark field scanning electron microscopy (HAADF STEM) are demonstrated. In this paper we demonstrate the spatial resolution and sensitivity of these different techniques on a simple calibration specimen where the accuracry of the measurement can easily be assessed. Introduction. Although the effects of introducing strain in semiconductor devices is well known from an electrical point of view, little is known about the distribution of strain. Indeed, it is only in the last few years that methods that can measure the strain with the required level of spatial resolution have been developed. Dark field electron holography (1), NBED (2) and HAADF STEM (3) are different TEM based techniques that have been developed in order to solve this problem. A calibration specimen was designed so that the different strain mapping techniques could be tested and compared to accurate simulations that would account for the relaxation of the thin TEM specimen. The calibration specimen that was examined was grown by reduced pressure chemical vapour deposition and comprised from top to bottom, a 150-nm-thick capping layer, then four 10- nm-thick SiGe layers with Ge concentrations of 45%, 38%, 31% and 20%, each separated by 30nm of silicon on a silicon substrate. As the growth is epitaxial, the lattice spacing in the in-plane (x- direction) does not change. However, in the growth (z-direction) the lattice parameter is expanded relative to the unstrained substrate due to the presence of Ge and it is this relative expansion which is measured. The dark holography experiments were performed using a probe corrected FEI Titan operated at 200 kV, the precession NBED (PED) and the HAADF STEM experiments were performed using a double corrected FEI Titan operated at 200 kV. All of the data was processed using software written at CEA.
- Published
- 2014
- Full Text
- View/download PDF
18. Picometre-precision atomic structure of inversion domain boundaries in GaN
- Author
-
Benedikt Haas, Robert A. McLeod, Thomas Auzelle, Bruno Daudin, Joël Eymery, Frédéric Lançon, Jian-Min Zuo, and Jean-Luc Rouvière
- Published
- 2016
- Full Text
- View/download PDF
19. In-situ propagation of a Cu phase in germanium nanowires observed by transmission electron microscopy
- Author
-
Khalil El Hajraoui, Clemens Zeiner, Eric Robin, Stéphanie Kodjikian, Alois Lugstein, Jean-Luc Rouvière, and Martien Den Hertog
- Published
- 2016
- Full Text
- View/download PDF
20. Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope
- Author
-
Armand Béché, Thibaud Denneulin, David Cooper, Nicolas Bernier, Jean-Luc Rouvière, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), European Project: 306535,EC:FP7:ERC,ERC-2012-StG_20111012,HOLOVIEW(2012), and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
Diffraction ,Reflection high-energy electron diffraction ,Materials science ,Local-Structure ,Thin-Films ,General Physics and Astronomy ,State Analysis ,02 engineering and technology ,01 natural sciences ,Electron holography ,Optics ,Geometrical phase analysis ,Structural Biology ,0103 physical sciences ,Scanning transmission electron microscopy ,Imaging Conditions ,General Materials Science ,Geometric Phase-Analysis ,Nanobeam Diffraction ,010302 applied physics ,[PHYS]Physics [physics] ,business.industry ,Dark field electron holography ,Resolution (electron density) ,Cell Biology ,021001 nanoscience & nanotechnology ,Dark field microscopy ,Semiconductors ,Transmission electron microscopy ,Strain mapping ,0210 nano-technology ,business ,Electron backscatter diffraction ,Precession diffraction - Abstract
International audience; The last few years have seen a great deal of progress in the development of transmission electron microscopy based techniques for strain mapping. New techniques have appeared such as dark field electron holography and nanobeam diffraction and better known ones such as geometrical phase analysis have been improved by using aberration corrected ultra-stable modern electron microscopes. In this paper we apply dark field electron holography, the geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images, nanobeam diffraction and precession diffraction, all performed at the state-of-the-art to five different types of semiconductor samples. These include a simple calibration structure comprising 10-nm-thick SiGe layers to benchmark the techniques. A SiGe recessed source and drain device has been examined in order to test their capabilities on 2D structures. Devices that have.been strained using a nitride stressor have been examined to test the sensitivity of the different techniques when applied to systems containing low values of deformation. To test the techniques on modern semiconductors, an electrically tested device grown on a SOI wafer has been examined. Finally a GaN/AlN superlattice was tested in order to assess the different methods of measuring deformation on specimens that do not have a perfect crystalline structure. The different deformation mapping techniques have been compared to one another and the strengths and weaknesses of each are discussed. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
- Published
- 2016
- Full Text
- View/download PDF
21. Comprehension of peculiar local emission behavior of InGaAs quantum well by colocalized nanocharacterization combining cathodoluminescence and electron microscopy techniques
- Author
-
Nicolas Bernier, Georges Beainy, Joyce Roque, Jean-Luc Rouvière, Névine Rochat, Mickael Martin, J. Moeyaert, Sylvain David, Thierry Baron, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
Materials science ,Silicon ,Band gap ,chemistry.chemical_element ,Cathodoluminescence ,02 engineering and technology ,Substrate (electronics) ,01 natural sciences ,0103 physical sciences ,Scanning transmission electron microscopy ,Materials Chemistry ,Metalorganic vapour phase epitaxy ,Electrical and Electronic Engineering ,Instrumentation ,Quantum well ,[PHYS]Physics [physics] ,010302 applied physics ,business.industry ,Process Chemistry and Technology ,021001 nanoscience & nanotechnology ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry ,Optoelectronics ,0210 nano-technology ,business ,Luminescence - Abstract
The electronic and structural properties of an In x Ga 1 − x As quantum well (QW) stacking between AlAs barriers grown on 300 mm (001) silicon substrate by metalorganic chemical vapor deposition were investigated. Nanometer scale and spatially colocalized characterization combining low temperature cathodoluminescence (CL) and scanning transmission electron microscopy was performed. The combined interpretation of luminescence and strain measurement provides an exhaustive landscape of such complex sample. Particularly, CL analysis highlights luminescent regions characterized by quasicircular shapes and a peculiar optical emission consisting of a double peak. The characterizations provide a comprehensive analysis of these specific luminescence features. These luminescent regions, detected all over the sample, seem to be correlated to local increases in carbon and indium content in AlAs barriers and in the InGaAs QW, respectively, induced by local strain variations. These modifications alter InGaAs QW properties and thus its optical emission efficiency.The electronic and structural properties of an In x Ga 1 − x As quantum well (QW) stacking between AlAs barriers grown on 300 mm (001) silicon substrate by metalorganic chemical vapor deposition were investigated. Nanometer scale and spatially colocalized characterization combining low temperature cathodoluminescence (CL) and scanning transmission electron microscopy was performed. The combined interpretation of luminescence and strain measurement provides an exhaustive landscape of such complex sample. Particularly, CL analysis highlights luminescent regions characterized by quasicircular shapes and a peculiar optical emission consisting of a double peak. The characterizations provide a comprehensive analysis of these specific luminescence features. These luminescent regions, detected all over the sample, seem to be correlated to local increases in carbon and indium content in AlAs barriers and in the InGaAs QW, respectively, induced by local strain variations. These modifications alter InGaAs QW...
- Published
- 2018
- Full Text
- View/download PDF
22. Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins
- Author
-
Celine Mouchet, Jean-Luc Rouvière, Cyril Cayron, Emmanuelle Rouvière, Laurence Latu-Romain, M. den Hertog, C. Secouard, Jean-Pierre Simonato, Clot, Marielle, Laboratoire des technologies de la microélectronique (LTM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), and Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Silicon ,Nanowire ,twinning ,chemistry.chemical_element ,artifacts ,02 engineering and technology ,01 natural sciences ,Electron beam physical vapor deposition ,General Biochemistry, Genetics and Molecular Biology ,0103 physical sciences ,Scanning transmission electron microscopy ,silicon thin films ,High-resolution transmission electron microscopy ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,Condensed matter physics ,Hexagonal phase ,021001 nanoscience & nanotechnology ,Research Papers ,silicon nanowires ,Crystallography ,chemistry ,Electron diffraction ,Transmission electron microscopy ,0210 nano-technology - Abstract
Anomalous extra spots visible in electron diffraction patterns of silicon nanowires and silicon thin films are explained by the presence of micro- and nanotwins., Odd electron diffraction patterns (EDPs) have been obtained by transmission electron microscopy (TEM) on silicon nanowires grown via the vapour–liquid–solid method and on silicon thin films deposited by electron beam evaporation. Many explanations have been given in the past, without consensus among the scientific community: size artifacts, twinning artifacts or, more widely accepted, the existence of new hexagonal Si phases. In order to resolve this issue, the microstructures of Si nanowires and Si thin films have been characterized by TEM, high-resolution transmission electron microscopy (HRTEM) and high-resolution scanning transmission electron microscopy. Despite the differences in the geometries and elaboration processes, the EDPs of the materials show great similarities. The different hypotheses reported in the literature have been investigated. It was found that the positions of the diffraction spots in the EDPs could be reproduced by simulating a hexagonal structure with c/a = 12(2/3)1/2, but the intensities in many EDPs remained unexplained. Finally, it was established that all the experimental data, i.e. EDPs and HRTEM images, agree with a classical cubic silicon structure containing two microstructural defects: (i) overlapping Σ3 microtwins which induce extra spots by double diffraction, and (ii) nanotwins which induce extra spots as a result of streaking effects. It is concluded that there is no hexagonal phase in the Si nanowires and the Si thin films presented in this work.
- Published
- 2009
- Full Text
- View/download PDF
23. Toward two-dimensional self-organization of nanostructures using wafer bonding and nanopatterned silicon surfaces
- Author
-
Jean-Luc Rouvière, François Rieutord, K. Rousseau, Pascal Gentile, Noël Magnea, Gilles Renaud, Hubert Moriceau, Joël Eymery, F. Fournel, Denis Buttard, and F. Leroy
- Subjects
Materials science ,Silicon ,Condensed matter physics ,Wafer bonding ,business.industry ,Scattering ,chemistry.chemical_element ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,law.invention ,Condensed Matter::Materials Science ,Optics ,chemistry ,Transmission electron microscopy ,law ,Quantum dot ,Wafer ,Electrical and Electronic Engineering ,Scanning tunneling microscope ,Dislocation ,business - Abstract
The structure of ultrathin silicon layers obtained by molecular hydrophobic bonding is investigated. The twist and tilt angles between the two crystals are accurately controlled. The buried Si|Si interface is observed by transmission electron microscopy and by grazing incidence X-ray techniques. For low twist angle values (/spl psi/
- Published
- 2002
- Full Text
- View/download PDF
24. Introduction
- Author
-
Thomas Walther, Rafal E. Dunin-Borkowski, Jean-Luc Rouvière, and Eric A. Stach
- Subjects
Mechanics of Materials ,Mechanical Engineering ,General Materials Science ,Condensed Matter Physics - Published
- 2017
- Full Text
- View/download PDF
25. Strain mapping at the nanoscale using precession electron diffraction in transmission electron microscope with off axis camera
- Author
-
Vincent Delaye, François Bertin, Nicolas Bernier, R. Cipro, D. Lafond, Jean-Luc Rouvière, G. Audoit, Mathieu Pierre Vigouroux, Thierry Baron, Mickael Martin, Bernard Chenevier, Laboratoire des matériaux et du génie physique (LMGP ), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire des technologies de la microélectronique (LTM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Labex Minos, Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
Physics ,Diffraction ,Reflection high-energy electron diffraction ,Physics and Astronomy (miscellaneous) ,business.industry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,law.invention ,Optics ,Electron diffraction ,Transmission electron microscopy ,law ,Cathode ray ,Precession electron diffraction ,Nanometre ,Electron microscope ,business - Abstract
International audience; Precession electron diffraction is an efficient technique to measure strain in nanostructures by precessing the electron beam, while maintaining a few nanometre probe size. Here, we show that an advanced diffraction pattern treatment allows reproducible and precise strain measurements to be obtained using a default 512 x 512 DigiSTAR off-axis camera both in advanced or non-corrected transmission electron microscopes. This treatment consists in both projective geometry correction of diffraction pattern distortions and strain Delaunay triangulation based analysis. Precision in the strain measurement is improved and reached 2.7 x 10(-4) with a probe size approaching 4.2 nm in diameter. This method is applied to the study of the strain state in InGaAs quantum-well (QW) devices elaborated on Si substrate. Results show that the GaAs/Si mismatch does not induce in-plane strain fluctuations in the InGaAs QW region. (C) 2014 AIP Publishing LLC.
- Published
- 2014
- Full Text
- View/download PDF
26. Molecular beam epitaxy of GaN, AlN, InN and related alloys: from two- to three-dimensional growth mode
- Author
-
Henri Mariette, N. T. Pelekanos, Guido Mula, G. Fishman, Christoph Adelmann, Bruno Daudin, Jean-Luc Rouvière, J. Simon, Guy Feuillet, Nanophysique et Semiconducteurs (NPSC), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Spectrométrie Physique (LSP), and Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Materials science ,business.industry ,Mechanical Engineering ,Kinetics ,Relaxation (NMR) ,Nucleation ,Heterojunction ,General Chemistry ,Nitride ,Electronic, Optical and Magnetic Materials ,Metal ,Quantum dot ,visual_art ,Materials Chemistry ,visual_art.visual_art_medium ,Optoelectronics ,Electrical and Electronic Engineering ,business ,Molecular beam epitaxy - Abstract
We demonstrate that the growth mode of GaN, AlN and InN in molecular beam epitaxy is two or three dimensional, depending on the competing kinetics of the metal species (Ga, Al or In) and of N. In this view, we show that the presence of foreign species acting as surfactants profoundly modifies the kinetics of the adatoms, eventually leading to an improvement in both structural and optical properties of the material. Next, we discuss the interplay between the growth mode and the strain relaxation in nitride heterostructures. In particular, we show that GaN and InGaN can experience a Stranski–Krastanov growth mode leading to the formation of quantum dots. A mechanism of quantum dot nucleation is proposed in the case of GaN on AlN.
- Published
- 2000
- Full Text
- View/download PDF
27. Deformation mapping in the TEM by dark holography, nanobeam diffraction, geometrical phase analysis and precession electron diffraction. A comparison of the different techniques
- Author
-
David Cooper, Nicolas Bernier, and Jean-Luc Rouvière
- Subjects
Physics ,Diffraction ,business.industry ,Gas electron diffraction ,Holography ,Deformation (meteorology) ,Condensed Matter Physics ,Biochemistry ,law.invention ,Inorganic Chemistry ,Optics ,Structural Biology ,law ,Precession electron diffraction ,General Materials Science ,Physical and Theoretical Chemistry ,business ,Phase analysis ,Electron backscatter diffraction - Published
- 2015
- Full Text
- View/download PDF
28. Solving difficult structures with electron diffraction
- Author
-
Jian-Min Zuo, Jean-Luc Rouvière, University of Illinois at Urbana-Champaign [Urbana], University of Illinois System, Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Diffraction ,Reflection high-energy electron diffraction ,Gas electron diffraction ,Physics::Optics ,Biochemistry ,Optics ,Inversion Symmetry ,Scanning transmission electron microscopy ,Precession electron diffraction ,General Materials Science ,electron-based structure analysis ,lcsh:Science ,ComputingMilieux_MISCELLANEOUS ,[PHYS]Physics [physics] ,Physics ,business.industry ,Bragg's law ,electron techniques ,General Chemistry ,Scientific Commentaries ,Condensed Matter Physics ,precession electron diffraction ,electron crystallography ,Electron diffraction ,lcsh:Q ,business ,Electron backscatter diffraction - Abstract
Electrons diffract in the same way as X-rays and neutrons, except that the electron wavelength is very small (of the order of a few picometers for 80–300 keV electrons), and the electron scattering cross-section is much larger, about a million times that of X-rays. Inside a transmission electron microscope (TEM), the electron beam can be focused down to ~1 A in diameter with the current reaching hundreds of picoamps (1 pA ≃ 6.3x106 e s−1), so the scattering power of an electron beam is larger than that of a synchrotron. Since electron diffraction was discovered by Davisson and Germer, and Thomson and Reid, in 1927, transmission electron diffraction and the related electron imaging have developed into powerful tools for the analysis of defects, microstructure, surfaces and interfaces in a broad range of materials. So why haven’t more unknown crystal structures been solved with high-energy electrons? The short answer lies in electron dynamic diffraction: the same strong interaction between electrons and matter that gives rise to large electron scattering cross sections also leads to strong multiple scattering. The theory of electron multiple scattering was developed as early as 1928 by Hans Bethe in his remarkable PhD thesis. Electron dynamic diffraction can allow the phase of structure factors to be determined to an accuracy of 0.2° by refining the electron diffraction intensity recorded in a convergent beam electron diffraction (CBED) pattern using the calculated dynamic intensities (Jiang et al., 2010 ▶). However, the refinement method requires a known structure. A general method for solving unknown crystal structures using dynamic diffraction intensities has yet to be developed, despite many outstanding efforts in the past (Spence et al., 1999 ▶; Allen et al., 2000 ▶; Koch, 2005 ▶). In the topical review by Midgley and Eggeman (Midgley & Eggeman, 2015 ▶), the authors describe the remarkable progress made in an alternative approach to electron structure solution, precession electron diffraction (PED), a technique discovered 20 years ago by Vincent & Midgley (1994 ▶). In PED, the incident electron beam rotates around a crystal direction, keeping a constant angle – the ‘precession angle’ – with this crystal direction. To compensate for the motion of diffracted beams as the incident beam rotates, the outgoing beams are deflected back (Fig. 1 ▶ in Midgley & Eggeman, 2015 ▶), similar to the double rocking technique for the recording of large-angle CBED patterns (Eades, 1980 ▶). By recording electron diffraction patterns with the incident electron beam in precession, PED is able to provide the integrated electron diffraction intensity across the Bragg condition for many reflections. The use of such intensities for structure solution in numerous test structures has shown surprising robustness against crystal thickness variations and small crystal misorientations, which could have a dramatic effect on electron diffraction intensities recorded using conventional techniques (see Fig. 1 ▶). Using PED intensities, crystal structures can be solved by a combination of phasing and structure refinement, where the R factor can be reduced to less than 10% by further including dynamic effects (Palatinus et al., 2013 ▶; Jacob et al., 2013 ▶). Figure 1 CBED patterns recorded using 200 kV electrons from Si along [001] (left) without and (right) with precession (precession angle 0.6°), respectively. Over the past decade, the development of aberration correctors for high-resolution electron microscopes has brought worldwide excitement and tremendous progress in real-space-based structure determinations using atomic resolution imaging and chemical analysis. Applications of these techniques tend to focus on the so-called radiation-hard materials, such as metals and ceramics. Since electron diffraction provides the strongest analytical signal inside a TEM, it can therefore be applied to small and complex (difficult) crystals. With the welcoming developments in PED, and its integration with the data acquisition tools of automated diffraction tomography (ADT, Kolb et al., 2007 ▶), scanning and automated diffraction pattern indexing and analysis (see review in Midgley & Eggeman, 2014 ▶), electron diffraction is rapidly developing into a truly quantitative crystallographic tool for the determination of atomic structure as well as complex microstructures. It is thus heartening to see a broad range of structures, including organic frameworks, complex zeolites, germano–silicate frameworks and organic crystals solved by PED (see Midgley & Eggeman, 2015 ▶). What is the future for electron diffraction? The quality of electron diffraction data, as well as speed of acquisition, is increasing rapidly with the development of fast cameras, sophisticated beam and sample manipulation methods, and data analysis (Koch, 2011 ▶; Kim & Zuo, 2013 ▶; Kim et al., 2013 ▶). Thus, in a not too distant future, we can expect more identifications of new structures and their solutions, especially in mixed phase materials or at interfaces and grain boundaries. Another intriguing possibility is to combine precession with high-order aberration corrections for precession scanning transmission electron microscopy (PSTEM). By reducing dynamical effects in the electron probe scattering using precession, significant gains can be achieved in quantitative three-dimensional electron imaging as well as chemical analysis.
- Published
- 2015
- Full Text
- View/download PDF
29. Practice of electron microscopy on nanoparticles sensitive to radiation damage: CsPbBr3 nanocrystals as a case study
- Author
-
Tuan M. Duong, Kshipra Sharma, Fabio Agnese, Jean-Luc Rouviere, Hanako Okuno, Stéphanie Pouget, Peter Reiss, and Wai Li Ling
- Subjects
lead halide perovskite ,low-dose electron microscopy ,electron diffraction ,cryo- TEM ,STEM ,graphene support film ,Chemistry ,QD1-999 - Abstract
In-depth and reliable characterization of advanced nanoparticles is crucial for revealing the origin of their unique features and for designing novel functional materials with tailored properties. Due to their small size, characterization beyond nanometric resolution, notably, by transmission electron microscopy (TEM) and associated techniques, is essential to provide meaningful information. Nevertheless, nanoparticles, especially those containing volatile elements or organic components, are sensitive to radiation damage. Here, using CsPbBr3 perovskite nanocrystals as an example, strategies to preserve the native structure of radiation-sensitive nanocrystals in high-resolution electron microscopy studies are presented. Atomic-resolution images obtained using graphene support films allow for a clear comparison with simulation results, showing that most CsPbBr3 nanocrystals are orthorhombic. Low-dose TEM reveals faceted nanocrystals with no in situ formed Pb crystallites, a feature observed in previous TEM studies that has been attributed to radiation damage. Cryo-electron microscopy further delays observable effects of radiation damage. Powder electron diffraction with a hybrid pixel direct electron detector confirms the domination of orthorhombic crystals. These results emphasize the importance of optimizing TEM grid preparation and of exploiting data collection strategies that impart minimum electron dose for revealing the true structure of radiation-sensitive nanocrystals.
- Published
- 2022
- Full Text
- View/download PDF
30. Measuring Lattice Parameters and Local Rotation using Convergent Beam Electron Diffraction: One Step Further
- Author
-
V. Favre-Nicolin, Y. Martin, Jean-Luc Rouvière, Jian-Min Zuo, Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), University of Illinois System, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
010302 applied physics ,Materials science ,business.industry ,One-Step ,02 engineering and technology ,Convergent beam ,021001 nanoscience & nanotechnology ,01 natural sciences ,Molecular physics ,Optics ,Electron diffraction ,Lattice (order) ,0103 physical sciences ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,business ,Instrumentation ,ComputingMilieux_MISCELLANEOUS - Abstract
Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.
- Published
- 2013
- Full Text
- View/download PDF
31. The addition of strain in uniaxially strained transistors by both SiN contact etch stop layers and recessed SiGe sources and drains
- Author
-
Jean-Luc Rouvière, Thibaud Denneulin, David Cooper, Jean-Michel Hartmann, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
010302 applied physics ,Electron mobility ,Materials science ,Strain (chemistry) ,Field (physics) ,business.industry ,Transistor ,fungi ,General Physics and Astronomy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,6. Clean water ,Electron holography ,law.invention ,[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,law ,0103 physical sciences ,MOSFET ,Optoelectronics ,Field-effect transistor ,Charge carrier ,0210 nano-technology ,business - Abstract
International audience; SiN contact etch stop layers (CESL) and recessed SiGe sources/drains are two uniaxial strain techniques used to boost the charge carriers mobility in p-type metal oxide semiconductor field effect transistors (pMOSFETs). It has already been shown that the electrical performances of the devices can be increased by combining both of these techniques on the same transistor. However, there are few experimental investigations of their additivity from the strain point of view. Here, spatially resolved strain mapping was performed using dark-field electron holography (DFEH) on pMOSFETs transistors strained by SiN CESL and embedded SiGe sources/drains. The influence of both processes on the strain distribution has been investigated independently before the combination was tested. This study was first performed with non-silicided devices. The results indicated that in the channel region, the strain induced by the combination of both processes is equal to the sum of the individual components. Then, the same investigation was performed after Ni-silicidation of the devices. It was found that in spite of a slight reduction of the strain due to the silicidation, the strain additivity is approximately preserved. Finally, it was also shown that DFEH can be a useful technique to characterize the strain field around dislocations.
- Published
- 2012
- Full Text
- View/download PDF
32. Quantitative strain mapping of InAs/InP quantum dots with 1 nm spatial resolution using dark field electron holography
- Author
-
Rafal E. Dunin-Borkowski, Armand Béché, Elizaveta Semenova, David Cooper, Jean-Luc Rouvière, Shima Kadkhodazadeh, and Kresten Yvind
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,Strain (chemistry) ,business.industry ,Measure (physics) ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Dark field microscopy ,Electron holography ,Condensed Matter::Materials Science ,Optics ,Semiconductor quantum dots ,Quantum dot ,Scanning transmission electron microscopy ,ddc:530 ,business ,Image resolution - Abstract
The optical properties of semiconductor quantum dots are greatly influenced by their strain state. Dark field electron holography has been used to measure the strain in InAs quantum dots grown in InP with a spatial resolution of 1 nm. A strain value of 5.4% +/- 0.1% has been determined which is consistent with both measurements made by geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images and with simulations. (C) 2011 American Institute of Physics. [doi:10.1063/1.3672194]
- Published
- 2011
- Full Text
- View/download PDF
33. Field Mapping in Semiconductors by Off-axis Electron Holography: From Devices to Graphene and Single Dopant Atoms
- Author
-
Jean-Luc Rouvière, Rafal E. Dunin-Borkowski, and David Cooper
- Subjects
Semiconductor ,Materials science ,Dopant ,business.industry ,Graphene ,law ,Optoelectronics ,Field mapping ,Nanotechnology ,business ,Instrumentation ,Electron holography ,law.invention - Published
- 2014
- Full Text
- View/download PDF
34. Study of Si Nanowires Growth by CVD-VLS and Physical Properties
- Author
-
Thierry Baron, Florian Dhalluin, Salem Bassem, Billel Salhi, Hicehm Abed, Alexis Potie, Marie Panabière, Sebastien Decossas, Martin Kogelschatz, Laurent Montès, Fabrice Oehler, Pascal Gentile, Nicolas Pauc, Martien Den Hertog, Jean-Luc Rouvière, Pierre Noe, Pierre Ferret, Clot, Marielle, Laboratoire des technologies de la microélectronique (LTM), Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation (IMEP-LAHC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Silicon Nanoelectronics Photonics and Structures (SiNaps), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,ComputingMilieux_MISCELLANEOUS ,[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat] ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] - Abstract
not Available.
- Published
- 2009
35. ANALYSIS OF STRUCTURES OF SYMMETRICAL [001] TILT GRAIN BOUNDARIES IN SILICON AND GERMANIUM
- Author
-
A. Bourret and Jean-Luc Rouvière
- Subjects
Crystallography ,Materials science ,Tilt (optics) ,Silicon ,chemistry ,Condensed matter physics ,General Engineering ,chemistry.chemical_element ,Grain boundary ,Germanium - Published
- 1990
- Full Text
- View/download PDF
36. Crystal structure and band gap determination of HfO2 thin films
- Author
-
Frans D. Tichelaar, Simone Pokrant, Jean-Luc Rouvière, Marie C. Cheynet, Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Nanosciences et Cryogénie (INAC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
crystal structure ,hafnium compounds ,Materials science ,Band gap ,Analytical chemistry ,General Physics and Astronomy ,02 engineering and technology ,Chemical vapor deposition ,electron energy loss spectra ,01 natural sciences ,Atomic layer deposition ,Vacuum deposition ,0103 physical sciences ,transmission electron microscopy ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Thin film ,High-resolution transmission electron microscopy ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,Electron energy loss spectroscopy ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,energy gap ,thin films ,chemical vapour deposition ,atomic layer deposition ,0210 nano-technology ,Monoclinic crystal system - Abstract
International audience; Valence electron energy loss spectroscopy (VEELS) and high resolution transmission electron microscopy (HRTEM) are performed on three different HfO2 thin films grown on Si (001) by chemical vapor deposition (CVD) or atomic layer deposition (ALD). For each sample the band gap (Eg) is determined by low-loss EELS analysis. The Eg values are then correlated with the crystal structure and the chemical properties of the films obtained by HRTEM images and VEELS line scans, respectively. They are discussed in comparison to both experimental and theoretical results published in literature. The HfO2 ALD film capped with poly-Si exhibits the largest band gap (Eg=5.9±0.5eV), as a consequence of its nanocrystallized orthorhombic structure. The large grains with a monoclinic structure formed in the HfO2 ALD film capped with Ge and the carbon contamination induced by the precursors in the HfO2 CVD film capped with Al2O3 are identified to be the main features responsible for lower band gap values (Eg=5.25±0.5 and 4.3±0.5eV respectively)
- Published
- 2007
- Full Text
- View/download PDF
37. Attribution of the 3.45 eV GaN nanowires luminescence to inversion domain boundaries
- Author
-
Jean-Luc Rouvière, Bruno Gayral, T. Auzelle, Martien Den Hertog, Bruno Daudin, Benedikt Haas, Nanophysique et Semiconducteurs (NPSC), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), ANR-12-JS10-0002,COSMOS,Correlation du microscopie électronique en transmission avec des mesures optique et électrique effectués sur le même nanofils unique(2012), ANR-11-NANO-0029,FIDEL,NanoFIls d'InGaN pour la réalisation de Diodes Electroluminescentes(2011), Matériaux, Rayonnements, Structure (NEEL - MRS), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,010302 applied physics ,Materials science ,Photoluminescence ,Polarity ,Physics and Astronomy (miscellaneous) ,business.industry ,Nanowire ,Wide-bandgap semiconductor ,02 engineering and technology ,Plasma ,021001 nanoscience & nanotechnology ,01 natural sciences ,Optics ,Nanolithography ,Molecular-Beam Epitaxy ,0103 physical sciences ,Scanning transmission electron microscopy ,Optoelectronics ,Defects ,0210 nano-technology ,business ,Luminescence ,Molecular beam epitaxy - Abstract
International audience; Using correlated experiments on single nanowires (NWs) by microphotoluminescence (mu-PL) and high resolution scanning transmission electron microscopy, we attribute the 3.45 eV luminescence of GaN NWs grown by plasma assisted molecular beam epitaxy (PA-MBE) to the presence of prismatic inversion domain boundaries (pIDBs). This attribution is further strengthened by a recent publication demonstrating the observation of pIDBs in PA-MBE grown GaN NWs. A statistical study of the presence of 3.45 eV lines in NWs PL spectra allows to estimate the ratio of single NWs nucleating with a pIDB to be 50% in the sample under scrutiny. (C) 2015 AIP Publishing LLC.
- Published
- 2015
- Full Text
- View/download PDF
38. Atomic arrangement at ZnTe/CdSe interfaces determined by high resolution scanning transmission electron microscopy and atom probe tomography
- Author
-
Edith Bellet-Amalric, Lionel Gérard, Pierre-Henri Jouneau, Bastien Bonef, Régis André, Adeline Grenier, Jean-Luc Rouvière, Henri Mariette, Catherine Bougerol, Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Nanophysique et Semiconducteurs (NEEL - NPSC), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Nanophysique et Semiconducteurs (NPSC), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
010302 applied physics ,Materials science ,Physics and Astronomy (miscellaneous) ,business.industry ,Superlattice ,Wide-bandgap semiconductor ,Analytical chemistry ,02 engineering and technology ,Atom probe ,021001 nanoscience & nanotechnology ,01 natural sciences ,law.invention ,Transmission electron microscopy ,law ,0103 physical sciences ,Monolayer ,Atom ,Scanning transmission electron microscopy ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,0210 nano-technology ,business ,Molecular beam epitaxy - Abstract
International audience; High resolution scanning transmission electron microscopy and atom probe tomography experiments reveal the presence of an intermediate layer at the interface between two binary compounds with no common atom, namely, ZnTe and CdSe for samples grown by Molecular Beam Epitaxy under standard conditions. This thin transition layer, of the order of 1 to 3 atomic planes, contains typically one monolayer of ZnSe. Even if it occurs at each interface, the direct interface, i.e., ZnTe on CdSe, is sharper than the reverse one, where the ZnSe layer is likely surrounded by alloyed layers. On the other hand, a CdTe-like interface was never observed. This interface knowledge is crucial to properly design superlattices for optoelectronic applications and to master band-gap engineering.
- Published
- 2015
- Full Text
- View/download PDF
39. Strain Distribution in GaN/AlN Quantum-Dot Superlattices
- Author
-
Aleksey D. Andreev, Eva Monroy, Jean-Luc Rouvière, Eirini Sarigiannidou, and Bruno Daudin
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,Strain (chemistry) ,Condensed matter physics ,Superlattice ,Wide-bandgap semiconductor ,symbols.namesake ,Condensed Matter::Materials Science ,Fourier transform ,Quantum dot ,Transmission electron microscopy ,Modulation ,symbols ,Elasticity (economics) - Abstract
The two-dimensional strain distribution in a GaN/AlN quantum-dot (QD) superlattice is measured from high-resolution transmission electron microscopy images using the geometrical phase analysis. The results are compared to elastic theoretical calculations using a combination of Fourier transform and Green's function techniques. The GaN/AlN system appears to be a model system for a comparison between theory and experiments as interdiffusion between GaN and AlN is negligible. We verify that for the case of a three-dimensional system, such as a QD, the biaxial strain approximation is not valid. Furthermore, we demonstrate that the presence of QDs induces a modulation in the strain state of the AlN barriers which is the driving force for the vertical alignment of the GaN QDs in the AlN matrix.
- Published
- 2005
40. Atomic Scale Analysis of Chemical Intermixing in MBE-Grown GaSb/InAs Superlattices Based on Z-Contrast Imaging
- Author
-
Y. Meng, H. Kim, Jean-Luc Rouvière, and Jian-Min Zuo
- Subjects
Materials science ,business.industry ,Superlattice ,Optoelectronics ,business ,Contrast imaging ,Instrumentation ,Atomic units - Abstract
Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.
- Published
- 2013
- Full Text
- View/download PDF
41. Growth and optical properties of GaN/AlN quantum wells
- Author
-
E. Sarigiannidou, Yuji Hori, Tomohiko Shibata, Jean-Luc Rouvière, S. Fanget, Catherine Bru-Chevallier, Masaaki Tanaka, Bruno Daudin, D. Jalabert, Christoph Adelmann, Laboratoire des matériaux et du génie physique (LMGP ), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Nanophysique et Semiconducteurs (NPSC), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), INL - Spectroscopies et Nanomatériaux (INL - S&N), Institut des Nanotechnologies de Lyon (INL), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), KEK (High energy accelerator research organization), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Range (particle radiation) ,Condensed Matter - Materials Science ,Photon ,Materials science ,Photoluminescence ,Physics and Astronomy (miscellaneous) ,business.industry ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Epitaxy ,01 natural sciences ,Electric field ,0103 physical sciences ,Optoelectronics ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010306 general physics ,0210 nano-technology ,business ,Quantum well ,ComputingMilieux_MISCELLANEOUS - Abstract
We demonstrate the growth of GaN/AlN quantum well structures by plasma-assisted molecular-beam epitaxy by taking advantage of the surfactant effect of Ga. The GaN/AlN quantum wells show photoluminescence emission with photon energies in the range between 4.2 and 2.3 eV for well widths between 0.7 and 2.6 nm, respectively. An internal electric field strength of $9.2\pm 1.0$ MV/cm is deduced from the dependence of the emission energy on the well width., Comment: Submitted to APL
- Published
- 2003
- Full Text
- View/download PDF
42. Control of the morphology transition for the growth of cubic GaN-AlN nanostructures
- Author
-
E. Martinez-Guerrero, Jean-Luc Rouvière, H. Mariette, F. Chabuel, Bruno Daudin, Nanophysique et Semiconducteurs (NPSC), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
[PHYS]Physics [physics] ,Materials science ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,Wide-bandgap semiconductor ,Gallium nitride ,Substrate (electronics) ,Nitride ,Cubic GaN ,Nanostructures ,chemistry.chemical_compound ,Condensed Matter::Materials Science ,Lattice constant ,chemistry ,Quantum dot ,TEM ,RHEED Oscillations ,Molecular Beam Epitaxy ,Quantum well ,Molecular beam epitaxy - Abstract
The Stransky–Krastanow growth mode of strained layers which gives rise to a morphology transition from two-dimensional layer to three-dimensional islands is studied in details for the cubic gallium nitride on cubic aluminum nitride (GaN/AlN) system grown by molecular beam epitaxy. Besides the lattice parameter mismatch which governs this transition, we evidence the importance of two other parameters, namely the substrate temperature and the III/V flux ratio. Tuning each of these two parameters enables to control the strain relaxation mechanism of a GaN deposited onto AlN, leading to the growth of either quantum wells or quantum dots.
- Published
- 2002
- Full Text
- View/download PDF
43. Measuring Strain in AlN/GaN Superlattices and Nanowires by NanoBeam Electron Diffraction
- Author
-
Armand Béché, Catherine Bougerol, Bruno Daudin, and Jean-Luc Rouvière
- Subjects
Crystallography ,Materials science ,Strain (chemistry) ,Electron diffraction ,business.industry ,Superlattice ,Nanowire ,Optoelectronics ,business ,Instrumentation - Abstract
Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.
- Published
- 2011
- Full Text
- View/download PDF
44. Measurement of Nanograin Orientations: Application to Cu Interconnects and Nanoparticle Phase Identification
- Author
-
Cyril Cayron, Amal Chabli, R. Galand, G. Brunetti, L. Clément, J. F. Martin, Donatien Robert, Jean-Luc Rouvière, E.F. Rauch, and François Bertin
- Subjects
Diffraction ,Materials science ,Microscope ,business.industry ,Orientation (computer vision) ,Context (language use) ,law.invention ,Optics ,Electron diffraction ,law ,Field emission gun ,business ,Instrumentation ,Image resolution ,Electron backscatter diffraction - Abstract
Today, orientation maps of polycrystalline material are necessary for a better understanding of, for example, the formation of voids in the interconnects modern electronic devices. In this context, EBSD (Electron BackScattering Diffraction) has proved to be a powerful tool to measure grain orientation, but its spatial resolution is limited at the best to a diameter of about 10 nm. As new generations of devices have dramatically reduced in size, new tools are required to meet these spatial resolution specifications. In this work the NanoBeam Electron Diffraction (NBED) coupled with the ASTAR system is used to obtain orientation maps. The ASTAR system is an automatic crystallographic orientation indexing tool developed for the transmission electron microscopes [1]. It can operate using the precession diffraction mode to provide quasikinematical patterns. Experiments were performed on two different microscopes: a JEOL 2010 FEF with a FEG (Field Emission Gun) and a JEOL 3010 equipped with a LaB6 filament. With these respective microscopes, diffraction patterns using a beam size of 3 nm (JEOL 2010 FEF) and 10 nm (JEOL 3010) can be achieved and indexation of grains or nanoparticles around 10-20 nm can be obtained. Orientation maps obtained with different configurations (microscopes, voltage, camera length, with and without precession) will be compared. Two studies will be presented: the first one deals with polycrystalline copper interconnections as used in the 45nm technological node, the second one, illustrates the phase identification in nanoparticles.
- Published
- 2011
- Full Text
- View/download PDF
45. Strain Measurement by Local Diffraction: NanoBeam Electron Diffraction (NBED) Compared to Convergent Beam (CBED) and Dark Holography
- Author
-
Thibaud Denneulin, Jean-Luc Rouvière, David K. C. Cooper, and Armand Béché
- Subjects
Diffraction ,Materials science ,Reflection high-energy electron diffraction ,business.industry ,Strain measurement ,Holography ,Convergent beam ,law.invention ,Optics ,Electron diffraction ,law ,business ,Instrumentation ,Electron backscatter diffraction - Abstract
Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.
- Published
- 2011
- Full Text
- View/download PDF
46. Counting Tm Dopant Atoms in and Around GaN Dots using Scannning Transmission Electron Microscopy
- Author
-
P Bayle-Guillemaud, Jean-Luc Rouvière, P Jouneau, H. Okuno, and Bruno Daudin
- Subjects
Conventional transmission electron microscope ,Materials science ,Electron tomography ,Dopant ,business.industry ,Transmission electron microscopy ,Scanning transmission electron microscopy ,Scanning confocal electron microscopy ,Analytical chemistry ,Energy filtered transmission electron microscopy ,Optoelectronics ,business ,Instrumentation - Abstract
Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.
- Published
- 2011
- Full Text
- View/download PDF
47. Stress Modulated Composition Fluctuation and Diffusion in near lattice match AlInN/GaN
- Author
-
Nicolas Grandjean, Anas Mouti, Jean-Luc Rouvière, and Pierre Stadelmann
- Subjects
Indium nitride ,Materials science ,Condensed matter physics ,Band gap ,Analytical chemistry ,chemistry.chemical_element ,Gallium nitride ,Nitride ,Stress (mechanics) ,chemistry.chemical_compound ,Lattice constant ,chemistry ,Gallium ,Dislocation ,Instrumentation - Abstract
AlInN is growing in importance as a high band gap semiconductor alloy because of its ability to be lattice matched to GaN and thus reduce defect creation in Group III based photonic devices. We report the study of stress driven composition modulation and diffusion in AlInN/GaN. The studied AlInN layers are grown on a micron thick GaN buffer layer grown on sapphire. Due to the high lattice mismatch between GaN and Sapphire, dislocations generate at the GaN/Sapphire interface and some of them propagate along the growth direction, forming what are called threading dislocations (TD). AlInN grown on the GaN buffer therefore inherits the stress fields of the TDs. One of our approaches involves studying composition distribution around TD in AlInN and compare them to calculations based on a Maxwell-Boltzmann model (Fig.1) to predict hydrostatic stress driven composition. Experiments involved STEM EDX (Fig.2) as well as Cs corrected STEM HAADF. We show that in regions of low disorder (low dislocation density), Indium Nitride, due to its higher lattice parameter tends to occupy regions of tensile stress, while Aluminum Nitride tends to regions of compressive stress, in good agreement with theory. We also show that TDs act as diffusion short circuits for GaN, which tends to replace Indium in regions of highly compressive stress (near dislocation cores). We provide as well strong evidence that Gallium Nitride diffusion is responsible, at least in some cases, fore the pit formation at the points of emergence of TDs, in contradiction with the widely assumed fact that InN is responsible for it [1]. Strained AlInN/GaN layers have also been studied by STEM/EDX, and show a far more considerable gallium diffusion into AlInN. This latter fact is characteristic of stress driven diffusion.
- Published
- 2009
- Full Text
- View/download PDF
48. Piezoelectric Properties of GaN Self-Organized Quantum Dots
- Author
-
J. Simon, Jean-Luc Rouvière, Guy Feuillet, Guy Fishman, N. T. Pelekanos, Bruno Daudin, and F. Widmann
- Subjects
Materials science ,Photoluminescence ,Field (physics) ,business.industry ,Band gap ,Nanogenerator ,Piezoelectricity ,Semiconductor ,Quantum dot ,Radiative transfer ,Optoelectronics ,General Materials Science ,business ,Wurtzite crystal structure ,Molecular beam epitaxy - Abstract
It is demonstrated that GaN quantum dots with the wurtzite structure grown by molecular beam epitaxy on AIN exhibit optical properties which, depending on the size of the dots, may be dominated by piezoelectric effects. In “large” quantum dots with an average height and diameter of 4.1 and 17 nm, respectively, the photoluminescence peak is centered at 2.95 eV, nearly 0.5 eV below the bulk GaN bandgap, which is assigned to a piezoelectric field of 5.5 MV/cm present in the dots. The decay time of the photoluminescence was also measured. A comparison is carried out with theoretical calculation of the radiative lifetime.
- Published
- 1998
- Full Text
- View/download PDF
49. Evidence of 2D-3D transition during the first stages of GaN growth on AlN
- Author
-
Jean-Luc Rouvière, Bruno Daudin, Guy Feuillet, M. Arlery, F. Widmann, and Yves Samson
- Subjects
Coalescence (physics) ,Materials science ,Reflection high-energy electron diffraction ,Condensed matter physics ,Electron diffraction ,Superlattice ,Relaxation (physics) ,General Materials Science ,Substrate (electronics) ,Molecular beam epitaxy ,Wurtzite crystal structure - Abstract
In order to identify the strain relaxation mechanism, Molecular Beam Epitaxy of wurtzite GaN on AlN was monitored in situ using Reflection High Energy Electron Diffraction (RHEED). In the substrate temperature range between 620°C and 720°C, a Stransky-Krastanov (SK) transition was evidenced, resulting in a 2D-3D transition after completion of 2 monolayers, with subsequent coalescence of 3D islands, eventually resulting in a smooth surface. Quantitative analysis of the RHEED pattern allowed us to determine that island formation is associated with elastic relaxation. After island coalescence, a progressive plastic relaxation is observed. The size and density of 3D islands was varied as a function of the growth parameters. AFM experiments revealed that the size of the GaN islands, about 8 nm large and 2 nm high, was small enough to expect quantum effects. It was found that capping of the islands by AlN resulted in a smooth surface after deposition of a few monolayers allowing us to grow a »superlattice» of islands by periodically repeating the process.
- Published
- 1997
- Full Text
- View/download PDF
50. Advanced semiconductor characterization with aberration corrected electron microscopes
- Author
-
M. den Hertog, Jian-Min Zuo, Eric Prestat, David K. C. Cooper, Jean-Luc Rouvière, Catherine Bougerol, and Pascale Bayle-Guillemaud
- Subjects
Physics ,History ,business.industry ,High resolution ,Computer Science Applications ,Education ,law.invention ,Characterization (materials science) ,Spherical aberration ,Optics ,Semiconductor ,law ,Electron microscope ,business ,Interface analysis ,Image resolution - Abstract
Spherical aberration (Cs) correctors were demonstrated in the last years of the twentieth century and became commercially available a few years later. In Grenoble, we received our first probe corrector on a TEM/STEM machine in 2006. Cs-correctors have allowed us to improve the spatial resolution and the contrast of high resolution images both in TEM and STEM. The aim of the article is not to give a detailed description of Cs-correctors or a thorough analysis of their pros and cons but to illustrate what the benefits of the Cs-correctors have been in four areas: (i) atomic structure determination, (ii) polarity measurement, (iii) strain determination and (iv) interface analysis. Emphasis is put on the probe corrector although some comments on image correctors are given as well.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.