Nathanael Aubert-Kato, Ibuki Kawamata, Masami Hagiya, Leo Cazenille, Guillaume Gines, Andre Estevez-Tores, Yannick Rondelez, Nicolas Bredeche, Charles Fosseprez, Huy Q. Dinh, Tokyo Institute of Technology [Tokyo] (TITECH), Ochanomizu University, Chimie-Biologie-Innovation (UMR 8231) (CBI), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Gulliver (UMR 7083), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Tohoku University [Sendai], Université Sorbonne Paris Cité (USPC), Centre National de la Recherche Scientifique (CNRS), Laboratoire Jean Perrin (LJP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Paris Seine (IBPS), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), The University of Tokyo (UTokyo), Institut des Systèmes Intelligents et de Robotique (ISIR), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
International audience; This paper deals with the programmability of a swarm of bio-micro-robots in order to display self-assembling behaviors into specific shapes. We consider robots that are DNA-functionalized micro-beads capable of sensing and expressing signals as well as self-assembling. We describe an in vitro experimentation with a million of micro-beads conditionally aggregating into clusters. Using a realistic simulation, we then address the question of how to automatically design the reaction networks that define the micro-robots' behavior, to self-assemble into a specific shape at a specific location. We use bioNEAT, an instantiation of the famous NEAT algorithm capable of handling chemical reaction networks, and CMA-ES to optimize the behavior of each micro-bead. As in swarm robotics, each micro-bead shares the same behavioral rules and the general outcome depends on interactions between neighbors and with the environment. Results obtained on four different target functions show that solutions optimized with evolutionary algorithms display efficient self-assembling behaviors, improving over pure hand-designed networks provided by an expert after a week-long trials and errors search. In addition, we show that evolved solutions are able to self-repair after damage, which is a critical property for smart materials.