113 results on '"G. Corradi"'
Search Results
2. Design and Performance of Data Acquisition and Control System for the Muon g-2 Laser Calibration
- Author
-
G. Piacentino, P. Di Meo, Fabrizio Marignetti, A. Nath, Dariush Hampai, G. Pauletta, Claudio Ferrari, D. Cauz, A. Anastasio, Marin Karuza, M. Incagli, Giovanni Cantatore, A. Gioiosa, R. Di Stefano, A. Driutti, Franco Bedeschi, A. Lusiani, A. Boiano, G. Di Sciascio, G. Venanzoni, M. Iacovacci, S. Mastroianni, G. Corradi, C. Gabbanini, A. Fioretti, L. Santi, Sultan B. Dabagov, Mastroianni, S., Anastasio, A., Bedeschi, F., Boiano, A., Cantatore, G., Cauz, D., Corradi, G., Dabagov, S., Di Meo, P., Driutti, A., Di Sciascio, G., Di Stefano, R., Ferrari, C., Fioretti, A., Gabbanini, C., Gioiosa, A., Hampai, D., Iacovacci, M., Incagli, M., Karuza, M., Lusiani, A., Marignetti, F., Nath, A., Pauletta, G., Piacentino, G. M., Santi, L., and Venanzoni, G.
- Subjects
Calibration system ,data acquisition (DAQ) and control ,field-programmable gate array (FPGA) ,Nuclear and High Energy Physics ,Signal processing ,010308 nuclear & particles physics ,business.industry ,Computer science ,Interface (computing) ,01 natural sciences ,Data acquisition ,Nuclear Energy and Engineering ,Gate array ,0103 physical sciences ,Calibration ,Systems design ,Fermilab ,Electrical and Electronic Engineering ,business ,Field-programmable gate array ,Computer hardware - Abstract
The Muon g-2 Experiment at Fermilab (E989) will measure the muon magnetic anomaly with unprecedented precision (0.14 ppm), which yields a factor of 4 improvement with respect to the previous measurements at Brookhaven National Laboratory (BNL) (E821). To achieve this goal, the relative response of each calorimeter channel must be calibrated and monitored at a level better than $10^{-3}$ in the time window of the muon fill. The calibration system uses a laser source and photodetectors. The data acquisition (DAQ) of the system is designed around two field-programmable gate array (FPGA)-based boards and a custom crate bus. The front-end board manages the photodetector operation and signal processing and performs a first-level data concentration task. Up to 12 FPGA boards can be housed in a 6U crate. A readout master controls the boards, implements event-building functionalities, manages the monitoring interface, and facilitates calibration and debugging tasks. A gigabit-ethernet interface is used to transfer data to the on-line farm for storage and further processing. Presently, the system is working at Fermi National Accelerator Laboratory (FNAL). In this article, we present the DAQ system design, run control user interface, and system evaluation.
- Published
- 2020
3. Search forK+→π+νν‾at NA62
- Author
-
R. Volpe, G. Aglieri Rinella, R. Aliberti, F. Ambrosino, R. Ammendola, B. Angelucci, A. Antonelli, G. Anzivino, R. Arcidiacono, I. Azhinenko, S. Balev, M. Barbanera, J. Bendotti, A. Biagioni, L. Bician, C. Biino, A. Bizzeti, T. Blazek, A. Blik, B. Bloch-Devaux, V. Bolotov, V. Bonaiuto, M. Boretto, M. Bragadireanu, D. Britton, G. Britvich, M.B. Brunetti, D. Bryman, F. Bucci, F. Butin, E. Capitolo, C. Capoccia, T. Capussela, A. Cassese, A. Catinaccio, A. Cecchetti, A. Ceccucci, P. Cenci, V. Cerny, C. Cerri, B. Checcucci, O. Chikilev, S. Chiozzi, R. Ciaranfi, G. Collazuol, A. Conovaloff, P. Cooke, P. Cooper, G. Corradi, E. Cortina Gil, F. Costantini, F. Cotorobai, A. Cotta Ramusino, D. Coward, G. D'Agostini, J. Dainton, P. Dalpiaz, H. Danielsson, J. Degrange, N. De Simone, D. Di Filippo, L. Di Lella, S. Di Lorenzo, N. Dixon, N. Doble, B. Dobrich, V. Duk, V. Elsha, J. Engelfried, T. Enik, N. Estrada, V. Falaleev, R. Fantechi, V. Fascianelli, L. Federici, S. Fedotov, M. Fiorini, J. Fry, J. Fu, A. Fucci, L. Fulton, S. Gallorini, S. Galeotti, E. Gamberini, L. Gatignon, G. Georgiev, A. Gianoli, M. Giorgi, S. Giudici, L. Glonti, A. Goncalves Martins, F. Gonnella, E. Goudzovski, R. Guida, E. Gushchin, F. Hahn, B. Hallgren, H. Heath, F. Herman, T. Husek, O. Hutanu, D. Hutchcroft, L. Iacobuzio, E. Iacopini, E. Imbergamo, O. Jamet, P. Jarron, E. Jones, T. Jones, K. Kampf, J. Kaplon, V. Kekelidze, S. Kholodenko, G. Khoriauli, A. Khotyantsev, A. Khudyakov, Yu. Kiryushin, A. Kleimenova, K. Kleinknecht, A. Kluge, M. Koval, V. Kozhuharov, M. Krivda, Z. Kucerova, Yu. Kudenko, J. Kunze, G. Lamanna, G. Latino, C. Lazzeroni, G. Lehmann-Miotto, R. Lenci, M. Lenti, E. Leonardi, P. Lichard, R. Lietava, L. Litov, R. Lollini, D. Lomidze, A. Lonardo, M. Lupi, N. Lurkin, K. McCormick, D. Madigozhin, G. Maire, C. Mandeiro, I. Mannelli, G. Mannocchi, A. Mapelli, F. Marchetto, R. Marchevski, S. Martellotti, P. Massarotti, K. Massri, P. Matak, E. Maurice, A. Mefodev, E. Menichetti, E. Minucci, M. Mirra, M. Misheva, N. Molokanova, J. Morant, M. Morel, M. Moulson, S. Movchan, D. Munday, M. Napolitano, I. Neri, F. Newson, A. Norton, M. Noy, G. Nuessle, T. Numao, V. Obraztsov, A. Ostankov, S. Padolski, R. Page, V. Palladino, G. Paoluzzi, C. Parkinson, E. Pedreschi, M. Pepe, F. Perez Gomez, M. Perrin-Terrin, L. Peruzzo, P. Petrov, F. Petrucci, R. Piandani, M. Piccini, D. Pietreanu, J. Pinzino, I. Polenkevich, L. Pontisso, Yu. Potrebenikov, D. Protopopescu, F. Raffaelli, M. Raggi, P. Riedler, A. Romano, P. Rubin, G. Ruggiero, V. Russo, V. Ryjov, A. Salamon, G. Salina, V. Samsonov, C. Santoni, G. Saracino, F. Sargeni, V. Semenov, A. Sergi, M. Serra, A. Shaikhiev, S. Shkarovskiy, I. Skillicorn, D. Soldi, A. Sotnikov, V. Sugonyaev, M. Sozzi, T. Spadaro, F. Spinella, R. Staley, A. Sturgess, P. Sutcliffe, N. Szilasi, D. Tagnani, S. Trilov, M. Valdata-Nappi, P. Valente, M. Vasile, T. Vassilieva, B. Velghe, M. Veltri, S. Venditti, P. Vicini, M. Vormstein, H. Wahl, R. Wanke, P. Wertelaers, A. Winhart, R. Winston, B. Wrona, O. Yushchenko, M. Zamkovsky, and A. Zinchenko
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Large Hadron Collider ,Meson ,010308 nuclear & particles physics ,Physics beyond the Standard Model ,NA62 experiment ,01 natural sciences ,Measure (mathematics) ,Nuclear physics ,Quality (physics) ,0103 physical sciences ,010306 general physics - Abstract
Among the meson decays, K → π ν ν ‾ are the cleanest environment, from the theoretical point of view, where to search for new physics effects. The NA62 Experiment at CERN SPS aims to measure the BR ( K + → π + ν ν ‾ ) with a 10% precision by the end of 2018. It has been commissioned with technical runs in 2014 and 2015, and some preliminary results of the detector performances and quality of data are here reported.
- Published
- 2017
4. Peer Review #2 of 'Symmetry preference in shapes, faces, flowers and landscapes (v0.2)'
- Author
-
G Corradi
- Subjects
Combinatorics ,Symmetry (geometry) ,Preference ,Mathematics - Published
- 2019
5. Muon g-2 calibration system data flow
- Author
-
S. Ceravolo, D. Moricciani, G. Piacentino, G. Corradi, A. Lusiani, O. Escalante, N. Raha, S. Di Falco, Claudio Ferrari, S. Donati, Gianluca Gagliardi, S. Mastroianni, Franco Bedeschi, P. Di Meo, Saverio Avino, G. Venanzoni, A. Boiano, A. Fioretti, D. Cauz, A. Anastasi, G. Pauletta, L. Santi, R. Di Stefano, Dariush Hampai, A. Nath, Giovanni Cantatore, A. Gioiosa, A. Anastasio, M. Iacovacci, Marin Karuza, S.B. Dabagov, C. Gabbanini, G. Di Sciascio, M. W. Smith, M. Incagli, A. Driutti, Fabrizio Marignetti, Anastasi, A., Anastasio, A., Avino, S., Bedeschi, F., Boiano, A., Cantatore, G., Cauz, D., Ceravolo, S., Corradi, G., Dabagov, S., Di Falco, S., Di Meo, P., Donati, S., Driutti, A., Di Sciascio, G., Di Stefano, R., Escalante, O., Ferrari, C., Fioretti, A., Gabbanini, C., Gagliardi, G., Gioiosa, A., Hampai, D., Iacovacci, M., Incagli, M., Karuza, M., Lusiani, A., Marignetti, F., Mastroianni, S., Moricciani, D., Nath, A., Pauletta, G., Piacentino, G. M., Raha, N., Santi, L., Smith, M. W., and Venanzoni, G.
- Subjects
Nuclear and High Energy Physics ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Laser calibration, DAQ, Monitoring system, muon: magnetic moment, laser, data acquisition, programming, electronics: design, control system, signal processing ,Change control board ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Software ,Data acquisition ,Control theory ,0103 physical sciences ,Calibration ,Fermilab ,Instrumentation ,Nuclear and High Energy Physic ,Physics ,010308 nuclear & particles physics ,business.industry ,DAQ ,Laser calibration ,Monitoring system ,Process (computing) ,Data flow diagram ,Laser calibration, DAQ, Monitoring system ,business ,Computer hardware ,Laser calibration, Monitoring system, DAQ - Abstract
In the Muon g-2 Experiment at Fermilab, a calibration apparatus based on a set of laser sources and a distribution system has been designed and implemented by the INFN group. The light pulses are read by specific photo-detectors, whose signals are digitized by custom electronics modules designed to match the experimental requirements. The data frames of each module are transmitted to a controller board that performs the event-building process and transfers the reconstructed data to the online farm. In this work we present the architecture and data flow of the acquisition system that depends on the laser calibration program defined inside the Laser Control board. Experimental results on the overall system performances, also including the software processes running both at controller and farm level will be described.
- Published
- 2019
6. The Mu2e calorimeter: Quality assurance of production crystals and SiPMs
- Author
-
M. Martini, Ren-Yuan Zhu, G. Tassielli, Z. Usubov, E. Pedreschi, G. Corradi, D. G. Hitlin, D. Caiulo, V. Glagolev, F. Spinella, F. Cervelli, I. Sarra, F. Happacher, S. Miscetti, M. Cordelli, R. Donghia, V. Tereshchenko, F. Grancagnolo, N. Atanov, E. Diociaiuti, S. Donati, Gianantonio Pezzullo, I. I. Vasilyev, S. Giovannella, Yu.I. Davydov, F. Colao, B. Echenard, F. Raffaelli, A. Saputi, S. Di Falco, J. Budagov, Luca Morescalchi, M. Ricci, T. S. Miyashita, P. Murat, F. C. Porter, V. A. Baranov, Atanov, N., Baranov, V., Budagov, J., Caiulo, D., Cervelli, F., Colao, F., Cordelli, M., Corradi, G., Davydov, Yu. I., Di Falco, S., Diociaiuti, E., Donati, S., Donghia, R., Echenard, B., Giovannella, S., Glagolev, V., Grancagnolo, F., Happacher, F., Hitlin, D. G., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Murat, P., Pedreschi, E., Pezzullo, G., Porter, F., Raffaelli, F., Ricci, M., Saputi, A., Sarra, I., Spinella, F., Tassielli, G., Tereshchenko, V., Usubov, Z., Vasilyev, I. I., and Zhu, R. Y.
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,01 natural sciences ,High Energy Physics - Experiment ,030218 nuclear medicine & medical imaging ,Crystal ,High Energy Physics - Experiment (hep-ex) ,03 medical and health sciences ,0302 clinical medicine ,Silicon photomultiplier ,0103 physical sciences ,Mu2e ,Instrumentation ,Physics ,Mu2e, electromagnetic calorimeter, crystal calorimeter ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,business.industry ,Instrumentation and Detectors (physics.ins-det) ,Technical specifications ,3. Good health ,Cathode ray ,Optoelectronics ,business ,Quality assurance - Abstract
The Mu2e calorimeter is composed of two disks each containing 1348 pure CsI crystals, each crystal read out by two arrays of 6x6 mm2 monolithic SiPMs. The experimental requirements have been translated in a series of technical specifications for both crystals and SiPMs. Quality assurance tests, on first crystal and then SiPM production batches, confirm the performances of preproduction samples previously assembled in a calorimeter prototype and tested with an electron beam. The production yield is sufficient to allow the construction of a calorimeter of the required quality in the expected times., Comment: 2 pages, 2 figures, 14th meeting on Advanced Detectors
- Published
- 2019
- Full Text
- View/download PDF
7. The calibration system of the Muon g-2 experiment
- Author
-
M. Incagli, A. Driutti, Dariush Hampai, Franco Bedeschi, N. Raha, Fabrizio Marignetti, A. Fioretti, A. Nath, A. Lusiani, G. Corradi, L. Santi, D. Moricciani, G. Piacentino, Marin Karuza, S. Mastroianni, A. Basti, D. Cauz, A. Gioiosa, S. Donati, M. Sorbara, Giovanni Cantatore, O. Escalante, G. Venanzoni, S. Di Falco, S.B. Dabagov, Melanie Ann Smith, G. Di Sciascio, C. Gabbanini, G. Pauletta, M. Iacovacci, Claudio Ferrari, R. Di Stefano, Driutti, A., Basti, A., Bedeschi, F., Cantatore, G., Cauz, D., Corradi, G., Dabagov, S., Di Falco, S., Di Sciascio, G., Di Stefano, R., Donati, S., Escalante, O., Ferrari, C., Fioretti, A., Gabbanini, C., Gioiosa, A., Hampai, D., Iacovacci, M., Incagli, M., Karuza, M., Lusiani, A., Marignetti, F., Mastroianni, S., Moricciani, D., Nath, A., Pauletta, G., Piacentino, G. M., Raha, N., Santi, L., Smith, M., Sorbara, M., and Venanzoni, G.
- Subjects
Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Electromagnetic calorimeter ,Laser system ,Muon g-2 ,Calibration methods ,Optics ,01 natural sciences ,law.invention ,Nuclear physics ,law ,0103 physical sciences ,Calibration ,Calibration method ,Fermilab ,010306 general physics ,Instrumentation ,Nuclear and High Energy Physic ,Physics ,Muon ,Anomalous magnetic dipole moment ,010308 nuclear & particles physics ,Calibration methods, Electromagnetic calorimeter, Laser system, Muon g-2, Optics ,Electromagnetic calorimeter, Laser system, Muon g-2, Calibration methods, Optics ,Laser ,Calorimeter ,Optic ,High Energy Physics::Experiment ,Beam (structure) ,Storage ring - Abstract
The Muon g –2 experiment at Fermilab (E989) plans to measure the muon anomalous magnetic moment to a precision of 140 parts per billion (ppb), which corresponds to a total uncertainty of 1 . 6 × 1 0 − 10 . To achieve this level of precision the experiment must detect more than 1 . 8 × 1 0 11 decay positrons by using the 24 calorimeters distributed around the muon storage ring. Each calorimeter consists of 54 Pb F 2 crystals read out by SiPMs. The response of each of the 1296 channels must be calibrated and monitored to keep uncertainties due to gain fluctuations at the sub-per mil level in the time interval corresponding to one beam fill ( 700 μ s ) and at the sub-percent level on longer time scales. These requirements are much more demanding than those needed by most high energy physics experiments. This paper presents a novel laser-based calibration system that distributes light to all calorimeter cells, while allowing one to correct for laser intensity fluctuations and to monitor the distribution chain stability at unprecedented levels of accuracy. Results on the system performance during the first few months of stored muon operation in 2018 are also presented.
- Published
- 2019
- Full Text
- View/download PDF
8. Production and Quality Assurance of the Mu2e Calorimeter Silicon Photomultipliers
- Author
-
E. Pedreschi, G. Corradi, M. Cordelli, S. Miscetti, L. Lucchesi, S. Giovannella, M. Ricci, F. Cervelli, A. Saputi, Stefan E. Müller, S. Di Falco, R. Donghia, A. Ferrari, E. Diociaiuti, F. Raffaelli, Luca Morescalchi, D. Caiulo, F. Happacher, F. Spinella, D. Pasciuto, M. Martini, I. Sarra, S. Donati, and Gianantonio Pezzullo
- Subjects
History ,Mean time between failures ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Computer science ,business.industry ,Modular design ,01 natural sciences ,Computer Science Applications ,Education ,Reliability engineering ,Reliability (semiconductor) ,Silicon photomultiplier ,0103 physical sciences ,Mu2e ,010306 general physics ,business ,Quality assurance ,Dark current - Abstract
The Mu2e calorimeter consists of 1348 undoped CsI crystals coupled to two large area UV-extended Silicon Photomultipliers (SiPMs). A modular and custom SiPM layout, a 3×2 matrix of 6×6 mm2 monolithic SiPMs, has been developed to satisfy the Mu2e requirements. As well as ensuring the performances needed for the muon-to-electron conversion search, these photosensors have to guarantee a good reliability while operating maintenance-free in the Mu2e hostile environment: any failure can only be replaced during a long technical shut-down scheduled once a year. After testing prototypes from different vendors, we selected Hamamatsu and the final production of about 4000 pieces is now ongoing. A detailed Quality Assurance (QA) program is then mandatory to minimize the risk of an unexpected further degradation in the performances. The QA process for each photosensor includes a first visual inspection and the subsequent characterization of each of its monolithic cells by means of an automatized test station, able to measure the breakdown voltage, the gain and the dark current. For each production batch (~300 pieces), 5 devices are exposed to a neutron fluency up to ~1.4×1011 1 MeV (Si) eq. n/cm2; others 15 devices are undergone an accelerated aging in order to verify the Mean Time To Failure (MTTF) of the batch. A summary of the QA and the results for the firsts 4 production batches are presented in the paper.
- Published
- 2019
- Full Text
- View/download PDF
9. Mu2e calorimeter readout system
- Author
-
E. Pedreschi, J. Budagov, D. G. Hitlin, G. Polacco, F. Happacher, S. Miscetti, N. Atanov, S. Donati, M. Sozzi, M. Cordelli, Luca Baldini, I. I. Vasilyev, A. Saputi, Gianantonio Pezzullo, M. Ricci, Luigi Lazzeri, Ren-Yuan Zhu, S. Faetti, S. Giudici, S. Di Falco, Z. Usubov, T. S. Miyashita, I. Sarra, Luca Morescalchi, F. Grancagnolo, F. Colao, P. Murat, F. Cervelli, R. Donghia, B. Echenard, F. Spinella, G. Corradi, F. C. Porter, Fabrizio Cei, V. Tereshchenko, Donato Nicolo, F. Raffaelli, V. A. Baranov, D. Caiulo, S. Giovannella, Yu.I. Davydov, V. Glagolev, M. Martini, G. Tassielli, Francesco D'Errico, E. Diociaiuti, Atanov, N., Baranov, V., Baldini, L., Budagov, J., Caiulo, D., Cei, F., Cervelli, F., Colao, F., Cordelli, M., Corradi, G., Davydov, Yu. I., D'Errico, F., Di Falco, S., Diociaiuti, E., Donati, S., Donghia, R., Echenard, B., Faetti, S., Giovannella, S., Giudici, S., Glagolev, V., Grancagnolo, F., Happacher, F., Hitlin, D. G., Lazzeri, L., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Murat, P., Nicolò, D., Pedreschi, E., Pezzullo, G., Polacco, G., Porter, F., Raffaelli, F., Ricci, M., Saputi, A., Sarra, I., Sozzi, M., Spinella, F., Tassielli, G., Tereshchenko, V., Usubov, Z., Vasilyev, I. I., and Zhu, R. Y.
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Mu2e calorimeter ,01 natural sciences ,Signal ,High Energy Physics - Experiment ,030218 nuclear medicine & medical imaging ,High Energy Physics - Experiment (hep-ex) ,03 medical and health sciences ,0302 clinical medicine ,Silicon photomultiplier ,0103 physical sciences ,Mu2e ,Waveform ,Instrumentation ,Digitizer ,Physics ,Front-end electronics ,Radiation tolerance ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,business.industry ,Amplifier ,Linear regulator ,High voltage ,Instrumentation and Detectors (physics.ins-det) ,Optoelectronics ,business - Abstract
The Mu2e electromagnetic calorimeter is made of two disks of un-doped parallelepiped CsI crystals readout by SiPM. There are 674 crystals in one disk and each crystal is readout by an array of two SiPM. The readout electronics is composed of two types of modules: 1) the front-end module hosts the shaping amplifier and the high voltage linear regulator; since one front-end module is interfaced to one SiPM, a total of 2696 modules are needed for the entire calorimeter; 2) a waveform digitizer provides a further level of amplification and digitizes the SiPM signal at the sampling frequency of $200\ \text{M}\text{Hz}$ with 12-bits ADC resolution; since one board digitizes the data received from 20 SiPMs, a total of 136 boards are needed. The readout system operational conditions are hostile: ionization dose of $20\ \text{krads}$, neutron flux of $10^{12}\ \mathrm{n}(1\ \text{MeVeq})/\text{cm}^2$, magnetic field of $1\ \text{T}$ and in vacuum level of $10^{-4}\ \text{Torr}$. A description of the readout system and qualification tests is reported.
- Published
- 2019
- Full Text
- View/download PDF
10. The monitoring electronics of the laser calibration system in the Muon g-2 experiment
- Author
-
A. Gioiosa, Gianluca Gagliardi, G. Corradi, A. Nath, M. Incagli, Claudio Ferrari, D. Moricciani, G. Di Sciascio, Saverio Avino, A. Driutti, G. Pauletta, S. Ceravolo, G. Piacentino, S. Donati, A. Anastasio, O. Escalante, M. Iacovacci, D. Cauz, Marin Karuza, N. Raha, M. W. Smith, Fabrizio Marignetti, A. Boiano, G. Venanzoni, S. Di Falco, A. Fioretti, Giovanni Cantatore, Sultan B. Dabagov, A. Anastasi, R. Di Stefano, C. Gabbanini, L. Santi, S. Mastroianni, Franco Bedeschi, A. Lusiani, Dariush Hampai, S. Di Meo, Anastasi, A., Anastasio, A., Avino, S., Bedeschi, F., Boiano, A., Cantatore, G., Cauz, D., Ceravolo, S., Corradi, G., Dabagov, S., Di Falco, S., Di Meo, S., Donati, S., Driutti, A., Di Sciascio, G., Di Stefano, R., Escalante, O., Ferrari, C., Fioretti, A., Gabbanini, C., Gagliardi, G., Gioiosa, A., Hampai, D., Iacovacci, M., Incagli, M., Karuza, M., Lusiani, A., Marignetti, F., Mastroianni, S., Moricciani, D., Nath, A., Pauletta, G., Piacentino, G. M., Raha, N., Santi, L., Smith, M. W., and Venanzoni, G.
- Subjects
Calorimetry ,DAQ ,Front-end ,Laser calibration ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Instrumentation ,01 natural sciences ,Calorimetry, Laser calibration, Front-end, DAQ ,030218 nuclear medicine & medical imaging ,law.invention ,03 medical and health sciences ,0302 clinical medicine ,Data acquisition ,Optics ,law ,0103 physical sciences ,Calibration ,Fermilab ,Nuclear and High Energy Physic ,Physics ,Muon ,010308 nuclear & particles physics ,business.industry ,Magnetic storage ,Laser ,Calorimeter ,High Energy Physics::Experiment ,business - Abstract
The new Muon g-2 experiment at Fermilab (E989) will measure the muon anomaly a μ = (g μ -2)/2 to an uncertainty of 16 x 10−11 (0.14 ppm). The experiment is running with a positive muon beam. The decay positrons are detected by 24 electromagnetic calorimeters placed on the inner radius of the magnetic storage ring. As the gain fluctuation of each calorimeter channel must be corrected to a few parts in 104, a state-of-art laser calibration system has been realized which provides short laser pulses to the calorimeters. The monitoring of these light signals is done by specific photo-detectors read by a specialized Monitoring Electronics, which is organized in devoted crates and performs the full data acquisition of the calibration signals starting from pre-amplification, then digitization and finally transfer of the information. Here we describe few key elements of the whole system, namely the single readout channel of the Monitoring Board.
- Published
- 2019
11. Design and status of the Mu2e crystal calorimeter
- Author
-
Claudio Ferrari, G. Tassielli, S. Ceravolo, S. Donati, Gianantonio Pezzullo, Dariush Hampai, C. Bloise, Anna Zanetti, F. Spinella, R. Donghia, G. Corradi, V. Tereshchenko, S. Giovannella, Yu.I. Davydov, M. Cordelli, D. Pasciuto, F. Cervelli, I. Sarra, F. Colao, N. Atanov, F. Grancagnolo, E. Pedreschi, B. Echenard, S. Miscetti, P. Murat, D. G. Hitlin, F. C. Porter, V. A. Baranov, T. S. Miyashita, F. Happacher, M. Martini, F. Raffaelli, Ren-Yuan Zhu, V. Glagolev, I. I. Vasilyev, Luca Morescalchi, E. Diociaiuti, A. Saputi, S. Di Falco, J. Budagov, Z. Usubov, Atanov, N., Baranov, V., Bloise, C., Budagov, J., Cervelli, F., Ceravolo, S., Colao, F., Cordelli, M., Corradi, G., Davydov, Y. I., Di Falco, S., Diociaiuti, E., Donati, S., Donghia, R., Echenard, B., Ferrari, C., Giovannella, S., Glagolev, V., Grancagnolo, F., Hampai, D., Happacher, F., Hitlin, D., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Murat, P., Pasciuto, D., Pedreschi, E., Pezzullo, G., Porter, F., Raffaelli, F., Saputi, A., Sarra, I., Spinella, F., Tassielli, G., Tereshchenko, V., Usubov, Z., Vasilyev, I. I., Zanetti, A., and Zhu, R. Y.
- Subjects
Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Orders of magnitude (temperature) ,SiPMs ,Calorimetry ,7. Clean energy ,01 natural sciences ,Particle identification ,030218 nuclear medicine & medical imaging ,Mu2e ,Pure CsI crystals ,03 medical and health sciences ,0302 clinical medicine ,Silicon photomultiplier ,Optics ,0103 physical sciences ,Fermilab ,Instrumentation ,Pure CsI crystal ,Physics ,Muon ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,business.industry ,Detector ,High Energy Physics::Experiment ,business - Abstract
The Mu2e experiment at Fermilab searches for the coherent neutrino-less muon to electron conversion in the Coulomb field of an aluminum nucleus. This charged-lepton flavor violating process is characterized by a distinctive signature of a mono-energetic electron ( ∼ 105 MeV/c) and its observation will be a clear signature of new physics beyond the Standard Model. The Mu2e goal is to improve by four orders of magnitude the search sensitivity with respect to the previous experiments. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external veto for cosmic rays. The calorimeter plays an important role in providing excellent particle identification capabilities, a fast online trigger filter while aiding the track reconstruction capabilities. It consists of 1348 pure CsI crystals divided in two annular disks, each one readout by two large area Silicon Photomultipliers. A large scale prototype has been tested with an electron beam , demonstrating to largely satisfy the Mu2e requirements. At the moment of writing, the crystals and SiPMs production phase is halfway through the completion. An overview of the characterization tests is reported, together with a description of the final mechanical and electronical design.
- Published
- 2020
12. The Mu2e Calorimeter Final Technical Design Report
- Author
-
G. Tassielli, S. Ceravolo, G. Corradi, M. Martini, Tommaso Radicioni, I. Sarra, P. Murat, Ren-Yuan Zhu, K. T. Flood, F. C. Porter, V. A. Baranov, R. Donghia, V. Tereshchenko, S. Miscetti, F. Grancagnolo, E. Dané, F. Spinella, M. Cordelli, Z. Usubov, D. G. Hitlin, N. Atanov, E. Diociaiuti, T. S. Miyashita, S. Giovannella, V. Glagolev, F. Raffaelli, D. Pasciuto, S. Donati, Y. I. Davydov, Gianantonio Pezzullo, F. Colao, B. Echenard, M. Ricci, F. Happacher, Luca Morescalchi, A. Saputi, S. Di Falco, J. Budagov, D. Tagnani, and F. Cervelli
- Subjects
Calorimeter (particle physics) ,APDS ,Computer science ,business.industry ,Electrical engineering ,Avalanche photodiode ,Technical design ,law.invention ,Silicon photomultiplier ,Backup ,law ,Mu2e ,Fermilab ,business - Abstract
Since the first version of the Mu2e TDR released at the beginning of 2015, the Mu2e Calorimeter system has undergone a long list of changes to arrive to its final design. These changes were primarily caused by two reasons: (i) the technology choice between the TDR proposed solution of BaF2 crystals readout with solar blind Avalanche Photodiodes (APDs) and the backup option of CsI crystals readout with Silicon Photomultipliers (SiPM) has been completed and (ii) the channels numbering, the mechanical system and the readout electronics were substantially modified while proceeding with engineering towards the final project. This document updates the description of the calorimeter system adding the most recent engineering drawings and tecnical progresses.
- Published
- 2018
13. Quality Assurance on Undoped CsI Crystals for the Mu2e Experiment
- Author
-
N. Atanov, V. Baranov, J. Budagov, D. Caiulo, F. Cervelli, F. Colao, M. Cordelli, G. Corradi, Yu. I. Davydov, S. Di Falco, E. Diociaiuti, S. Donati, R. Donghia, B. Echenard, S. Giovannella, V. Glagolev, F. Grancagnolo, F. Happacher, D. Hitlin, C. Hu, M. Martini, S. Miscetti, T. Miyashita, L. Morescalchi, P. Murat, E. Pedreschi, G. Pezzullo, F. Porter, F. Raffaelli, M. Ricci, A. Saputi, I. Sarra, F. Spinella, G. Tassielli, V. Tereshchenko, Z. Usubov, I. I. Vasilyev, L. Zhang, R. Y. Zhu, Atanov, N., Baranov, V., Budagov, J., Caiulo, D., Cervelli, F., Colao, F., Cordelli, M., Corradi, G., Davydov, Yu. I., Di Falco, S., Diociaiuti, E., Donati, S., Donghia, R., Echenard, B., Giovannella, S., Glagolev, V., Grancagnolo, F., Happacher, F., Hitlin, D., Hu, C., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Murat, P., Pedreschi, E., Pezzullo, G., Porter, F., Raffaelli, F., Ricci, M., Saputi, A., Sarra, I., Spinella, F., Tassielli, G., Tereshchenko, V., Usubov, Z., Vasilyev, I. I., Zhang, L., and Zhu, R. Y.
- Subjects
Nuclear and High Energy Physics ,Materials science ,Physics - Instrumentation and Detectors ,Silicon ,Physics::Instrumentation and Detectors ,Photoconductivity ,Crystals, Correlation, Photoconductivity, Energy resolution, Silicon carbide, Current measurement, Radiation effects ,chemistry.chemical_element ,FOS: Physical sciences ,Radiation effects ,Silicon carbide ,01 natural sciences ,Crystals ,030218 nuclear medicine & medical imaging ,High Energy Physics - Experiment ,Crystal ,03 medical and health sciences ,High Energy Physics - Experiment (hep-ex) ,0302 clinical medicine ,Ionization ,Condensed Matter::Superconductivity ,0103 physical sciences ,Mu2e ,Neutron ,Electrical and Electronic Engineering ,Energy resolution ,Radiation hardening ,Scintillation ,010308 nuclear & particles physics ,business.industry ,Instrumentation and Detectors (physics.ins-det) ,Current measurement ,3. Good health ,Calorimeter ,Correlation ,Nuclear Energy and Engineering ,chemistry ,Optoelectronics ,business - Abstract
The Mu2e experiment is constructing a calorimeter consisting of 1,348 undoped CsI crystals in two disks. Each crystal has a dimension of 34 x 34 x 200 mm, and is readout by a large area silicon PMT array. A series of technical specifications was defined according to physics requirements. Preproduction CsI crystals were procured from three firms: Amcrys, Saint-Gobain and Shanghai Institute of Ceramics. We report the quality assurance on crystal's scintillation properties and their radiation hardness against ionization dose and neutrons. With a fast decay time of 30 ns and a light output of more than 100 p.e./MeV measured with a bi-alkali PMT, undoped CsI crystals provide a cost-effective solution for the Mu2e experiment., Comment: 7 pages, 16 figures, published in IEEE TNS NS (2018)
- Published
- 2018
- Full Text
- View/download PDF
14. Design, Status and Perspective of the Mu2e Crystal Calorimeter
- Author
-
G. Pezzullo, N. Atanov, V. Baranov, J. Budagov, F. Cervelli, F. Colao, E. Diociaiuti, M. Cordelli, G. Corradi, E. Danè, Yu. Davydov, S. Donati, R. Donghia, S. Di Falco, B. Echenard, L. Morescalchi, S. Giovannella, V. Glagolev, F. Grancagnolo, F. Happacher, D. Hitlin, M. Martini, S. Miscetti, T. Miyashita, P. Murat, E. Pedreschi, F. Porter, F. Raffaelli, M. Ricci, A. Saputi, I. Sarra, F. Spinella, G. Tassielli, V. Tereshchenko, R. Y. Zhu, Pezzullo, G., Atanov, N., Baranov, V., Budagov, J., Cervelli, F., Colao, F., Diociaiuti, E., Cordelli, M., Corradi, G., Danè, E., Davydov, Yu., Donati, S., Donghia, R., Di Falco, S., Echenard, B., Morescalchi, L., Giovannella, S., Glagolev, V., Grancagnolo, F., Happacher, F., Hitlin, D., Martini, M., Miscetti, S., Miyashita, T., Murat, P., Pedreschi, E., Porter, F., Raffaelli, F., Ricci, M., Saputi, A., Sarra, I., Spinella, F., Tassielli, G., Tereshchenko, V., and Zhu, R. Y.
- Subjects
Physics ,Physics - Instrumentation and Detectors ,Calorimeter (particle physics) ,Physics::Instrumentation and Detectors ,Orders of magnitude (temperature) ,Detector ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Silicon photomultiplier ,Mu2e, crystal calorimeter ,Mu2e ,High Energy Physics::Experiment ,Fermilab ,Sensitivity (control systems) ,Lepton - Abstract
The Mu2e experiment at Fermilab will search for the charged lepton flavor violating process of neutrino-less $��\to e$ coherent conversion in the field of an aluminum nucleus. Mu2e will reach a single event sensitivity of about $2.5\cdot 10^{-17}$ that corresponds to four orders of magnitude improvements with respect to the current best limit. The detector system consists of a straw tube tracker and a crystal calorimeter made of undoped CsI coupled with Silicon Photomultipliers. The calorimeter was designed to be operable in a harsh environment where about 10 krad/year will be delivered in the hottest region and work in presence of 1 T magnetic field. The calorimeter role is to perform $��$/e separation to suppress cosmic muons mimiking the signal, while providing a high level trigger and a seeding the track search in the tracker. In this paper we present the calorimeter design and the latest R$\&$D results., 4 pages, conference proceeding for a presentation held at TIPP'2017. To be published on Springer Proceedings in Physics
- Published
- 2018
15. The Mu2e undoped CsI crystal calorimeter
- Author
-
Gianantonio Pezzullo, F. Happacher, A. Saputi, M. Cordelli, G. F. Tassielli, S. Donati, E. Pedreschi, F. Colao, F. Spinella, G. Corradi, T. S. Miyashita, V. Glagolev, Luca Morescalchi, F. Grancagnolo, Marco Martini, V. Tereshchenko, D. G. Hitlin, Z. Usubov, Frank C. Porter, R. Donghia, P. Murat, Yu.I. Davydov, S. Giovannella, E. Diociaiuti, I. Sarra, Bertrand Echenard, J. Budagov, F. Cervelli, M. Ricci, S. Miscetti, V. Baranov, F. Raffaelli, Ren-Yuan Zhu, S. Di Falco, N. Atanov, Atanov, N., Baranov, V., Budagov, J., Cervelli, F., Colao, F., Cordelli, M., Corradi, G., Davydov, Y. I., Falco, S. Di, Diociaiuti, E., Donati, S., Donghia, R., Echenard, B., Giovannella, S., Glagolev, V., Grancagnolo, F., Happacher, F., Hitlin, D. G., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Murat, P., Pedreschi, E., Pezzullo, G., Porter, F., Raffaelli, F., Ricci, M., Saputi, A., Sarra, I., Spinella, F., Tassielli, G., Tereshchenko, V., Usubov, Z., and Zhu, R. Y.
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Performance of High Energy Physics Detector ,FOS: Physical sciences ,Solenoid ,01 natural sciences ,7. Clean energy ,Particle identification ,Silicon photomultiplier ,Optics ,0103 physical sciences ,Mu2e ,Fermilab ,010306 general physics ,Instrumentation ,Mathematical Physics ,Physics ,Calorimeter ,Muon ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,business.industry ,Detector ,Instrumentation and Detectors (physics.ins-det) ,High Energy Physics::Experiment ,business - Abstract
The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not the final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment., Comment: 6 pages, 8 figures, proceedings of the "Calorimetry for the high energy frontier (CHEF17)" conference, 2-6 October 2017, Lyon, France
- Published
- 2018
- Full Text
- View/download PDF
16. Quality Assurance on a custom SiPMs array for the Mu2e experiment
- Author
-
Luca Morescalchi, F. Grancagnolo, V. Baranov, S. Miscetti, E. Diociaiuti, Gianantonio Pezzullo, D. G. Hitlin, Z. Usubov, F. Raffaelli, Frank C. Porter, F. Cervelli, F. Colao, G. Corradi, T. S. Miyashita, J. Budagov, S. Di Falco, S. Giovannella, V. Glagolev, F. Spinella, N. Atanov, Marco Martini, A. Saputi, Bertrand Echenard, P. Murat, M. Ricci, Yu.I. Davydov, Ren-Yuan Zhu, S. Donati, V. Tereshchenko, E. Pedreschi, I. Sarra, R. Donghia, M. Cordelli, G. F. Tassielli, F. Happacher, Atanov, N., Baranov, V., Budagov, J., Davydov, Y. I., Glagolev, V., Tereshchenko, V., Usubov, Z., Cervelli, F., Falco, S. D., Donati, S., Morescalchi, L., Pedreschi, E., Pezzullo, G., Raffaelli, F., Spinella, F., Colao, F., Cordelli, M., Corradi, G., Diociaiuti, E., Donghia, R., Giovannella, S., Happacher, F., Martini, M., Miscetti, S., Ricci, M., Saputi, A., Sarra, I., Echenard, B., Hitlin, D. G., Miyashita, T., Porter, F., Zhu, R. Y., Grancagnolo, F., Tassielli, G., and Murat, P.
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Radiation effect ,FOS: Physical sciences ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Silicon photomultiplier ,Optics ,Mu2e ,Fermilab ,Physics ,business.industry ,010401 analytical chemistry ,Detector ,Instrumentation and Detectors (physics.ins-det) ,0104 chemical sciences ,Calorimeter ,010404 medicinal & biomolecular chemistry ,High energy physics instrumentation ,Silicon radiation detectors ,Nuclear physic ,High Energy Physics::Experiment ,business ,Quality assurance ,Dark current ,Voltage - Abstract
The Mu2e experiment at Fermilab will search for the coherent $\mu \to e$ conversion on aluminum atoms. The detector system consists of a straw tube tracker and a crystal calorimeter. A pre-production of 150 Silicon Photomultiplier arrays for the Mu2e calorimeter has been procured. A detailed quality assur- ance has been carried out on each SiPM for the determination of its own operation voltage, gain, dark current and PDE. The measurement of the mean-time-to-failure for a small random sample of the pro-production group has been also completed as well as the determination of the dark current increase as a function of the ioninizing and non-ioninizing dose., Comment: 4 pages, 10 figures, conference proceeding for NSS-MIC 2017
- Published
- 2018
17. Design and status of the Mu2e crystal calorimeter
- Author
-
Z. Usubov, G. Corradi, V. Glagolev, M. Ricci, R. Donghia, E. Pedreschi, T. S. Miyashita, S. Miscetti, F. Raffaelli, E. Diociaiuti, A. Saputi, M. Cordelli, G. F. Tassielli, Frank C. Porter, Luca Morescalchi, V. Baranov, F. Grancagnolo, S. Donati, S. Di Falco, Marco Martini, N. Atanov, J. Budagov, Ren-Yuan Zhu, D. G. Hitlin, S. Giovannella, V. Tereshchenko, Gianantonio Pezzullo, F. Spinella, F. Cervelli, I. Sarra, P. Murat, F. Happacher, Yu.I. Davydov, F. Colao, B. Echenard, Atanov, N., Baranov, V., Budagov, J., Davydov, Yu. I., Glagolev, V., Tereshchenko, V., Usubov, Z., Cervelli, F., Di Falco, S., Donati, S., Morescalchi, L., Pedreschi, E., Pezzullo, G., Raffaelli, F., Spinella, F., Colao, F., Cordelli, M., Corradi, G., Diociaiuti, E., Donghia, R., Giovannella, S., Happacher, F., Martini, M., Miscetti, S., Ricci, M., Saputi, A., Sarra, I., Echenard, B., Hitlin, D. G., Miyashita, T., Porter, F., Zhu, R. Y., Grancagnolo, F., Tassielli, G., and Murat, P.
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Solenoid ,Electron ,7. Clean energy ,01 natural sciences ,Particle identification ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Silicon photomultiplier ,Crystal ,0103 physical sciences ,Mu2e ,Fermilab ,Energy resolution ,Electrical and Electronic Engineering ,010306 general physics ,Nuclear and High Energy Physic ,Physics ,Muon ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Meson ,Cosmic ray ,Nuclear Energy and Engineering ,High Energy Physics::Experiment ,Aluminum - Abstract
The Mu2e experiment at Fermilab searches for the charged-lepton flavour violating (CLFV) conversion of a negative muon into an electron in the field of an aluminum nucleus, with a distinctive signature of a mono-energetic electron of energy slightly below the muon rest mass (104.967 MeV). The Mu2e goal is to improve by four orders of magnitude the search sensitivity with respect to the previous experiments. Any observation of a CLFV signal will be a clear indication of new physics. The Mu2e detector is composed of a tracker, an electro- magnetic calorimeter and an external veto for cosmic rays surrounding the solenoid. The calorimeter plays an important role in providing particle identification capabilities, a fast online trigger filter, a seed for track reconstruction while working in vacuum, in the presence of 1 T axial magnetic field and in an harsh radiation environment. The calorimeter requirements are to provide a large acceptance for 100 MeV electrons and reach at these energies: (a) a time resolution better than 0.5 ns; (b) an energy resolution < 10% and (c) a position resolution of 1 cm. The calorimeter design consists of two disks, each one made of 674 undoped CsI crystals read by two large area arrays of UV-extended SiPMs. We report here the construction and test of the Module-0 prototype. The Module-0 has been exposed to an electron beam in the energy range around 100 MeV at the Beam Test Facility in Frascati. Preliminary results of timing and energy resolution at normal incidence are shown. A discussion of the technical aspects of the calorimeter engineering is also reported in this paper., 8 pages, 16 figures, submitted to IEEE
- Published
- 2018
- Full Text
- View/download PDF
18. Test of candidate light distributors for the muon(g−2)laser calibration system
- Author
-
Marin Karuza, R. Di Stefano, D. Cauz, M. Iacovacci, A. Fioretti, Claudio Ferrari, D. Babusci, A. Anastasi, G. Venanzoni, D. Moricciani, S. Mastroianni, D. W. Hertzog, Petra Koester, F. Baffigi, L. Fulgentini, J. Kaspar, L. A. Gizzi, Giovanni Cantatore, C. Gabbanini, L. Labate, G. Pauletta, L. Santi, Dariush Hampai, G. Di Sciascio, A.T. Fienberg, Sultan B. Dabagov, and G. Corradi
- Subjects
Physics ,Nuclear and High Energy Physics ,Muon ,Physics::Instrumentation and Detectors ,business.industry ,Laser ,law.invention ,Electromagnetic calorimeter ,Integrating sphere ,Optics ,law ,Calibration ,Transmittance ,High Energy Physics::Experiment ,Fermilab ,business ,Instrumentation ,Diffuser (optics) - Abstract
The new muon (g−2) experiment E989 at Fermilab will be equipped with a laser calibration system for all the 1296 channels of the calorimeters. An integrating sphere and an alternative system based on an engineered diffuser have been considered as possible light distributors for the experiment. We present here a detailed comparison of the two based on temporal response, spatial uniformity, transmittance and time stability.
- Published
- 2015
19. Performances of an Active Target GEM-Based TPC for the AMADEUS Experiment
- Author
-
Johann Zmeskal, Antonio Romero Vidal, Marco Poli Lener, Catalina Curceanu, D. Tagnani, and G. Corradi
- Subjects
Physics ,Time projection chamber ,Physics::Instrumentation and Detectors ,Detector ,Tracking (particle physics) ,Particle identification ,law.invention ,Momentum ,Nuclear physics ,law ,Gas electron multiplier ,Nuclear Experiment ,Collider ,Beam (structure) - Abstract
In this paper, we present the R & D activity on a new GEM-based Time Projection Chamber (GEM-TPC) detector for the inner region of the AMADEUS experiment, which is aiming to perform measurements of low-energy negative kaon interactions in nuclei at the DAΦNE e+ e- collider at LNF-INFN. A novel idea of using a GEM-TPC as a low mass target and detector at the same time comes motivated by the need of studying the low energy interactions of K- with nuclei in a complete way, tracking and identifying all of the produced particles. Even more, what makes the experimental proposal revolutionary is the possibility of using different gaseous targets without any other substantial intervention on the experimental setup, making it a flexible multipurpose device. This new detection technique applied to the nuclear physics requires the use of low-radiation length materials and very pure light gases such as Hydrogen, Deuterium, Helium-3, Helium-4, etc. In order to evaluate the GEM-TPC performances, a 10 × 10 cm2 prototype with a drift gap of 15 cm has been realized. The detector was tested at the πM1 beam facility of the Paul Scherrer Institut (PSI) with low momentum pions and protons. Detection efficiency and spatial resolution, as a function of gas mixture, gas gain and ionazing particle, are reported and discussed.
- Published
- 2015
20. $K\to\pi\nu\nu$ at NA62
- Author
-
G. Anzivino, J. Morant, N. Estrada, N Desimone, G. Paoluzzi, C. Capoccia, Kekelidze, P. Wertelaers, Semenov, P. Sutcliffe, E. Iacopini, M. Lenti, F. Marchetto, Piero Vicini, T Jones KKampf, Christopher John Parkinson, M. Veltri, G. Corradi, Cerny, D. Pietreanu, Pierre Jarron, A An tonelli, P. Lichard, M. Fiorini, Marian Krivda, F. Bucci, T. Numao, D. Tagnani, Milena Misheva, R. Fantechi, Evgueni Goudzovski, Yu. Kiryushin, H. D. Wahl, G. Maire, R. Aliberti, A. Norton, Roland Winston, P. Petrov, Petra Riedler, N. Doble, D. Soldi, E. Cortina Gil, B. Velghe, Roberto Piandani, S. Chiozzi, F. Cotorobai, Mauro Raggi, I. O. Skillicorn, L. Fulton, A. Mapelli, David Lomidze, L. Di Lella, L. Bician, Luca Federici, G. D'Agostini, F. Perez Gomez, Likhacheva, E. Capitolo, Mauro Piccini, J. Degrange, Elsha, J. Kaplon, M. Pepe, Paolo Massarotti, R. Page, S. Giudici, Mario Giorgi, Rainer Wanke, D. Di Filippo, A. Sturgess, B. Wrona, A. Fucci, P. Rubin, L. Peruzzo, R. Guida, G. Salina, Andrea Catinaccio, G. Mannocchi, O. Hutanu, A. Goncalves Martins, Georgi P. Georgiev, A. Winhart, Bonaiuto, Z. Kucerova, A. Conovaloff, S. Balev, A. Khudyakov, M. Boretto, Paolo Valente, F. Hahn, A Khotyant sev, Dave Britton, F. Newson, A. Ceccucci, B. Checcucci, Andrea Bizzeti, Roberto Ammendola, S. Shkarovskiy, M. Zamkovsky, J. Kunze, Roberto Ciaranfi, J. B. Dainton, Helen F Heath, J. R. Fry, J. L. Fu, M Valdata Nappi, M. Vormstein, P. Cenci, I. Azhinenko, N. A. Molokanova, G. Ruggiero, J. Noël, M. Koval, S. Venditti, A. Shaikhiev, R. Lenci, Samsonov, A. Salamon, Mattia Barbanera, G. Khoriauli, H. O. Danielsson, A. Romano, Fausto Sargeni, M. Serra, F. Herman, G. Collazuol, M. Napolitano, S. Gallorini, M. Medvedeva, J. Calvo, A P Ostankov, M. Vasile, G. Lamanna, S. Ghinescu, R. Volpe, M. Bragadireanu, P. S. Cooper, J. Pinzino, D. J. Munday, T. Vassilieva, F. Costantini, Mb Brunetti, Fabrizio Petrucci, Luca Pontisso, Francesco Gonnella, Tomas Blazek, A. Cotta Ramusino, D. E. Hutchcroft, Leander Litov, S. Padolski, L. Iacobuzio, O. Yushchenko, Konrad Kleinknecht, Emilio Leonardi, I. Polenkevich, A. Kleimenova, S. Kholodenko, A. Sotnikov, D. Coward, Palladino, G. Britvich, Yu. Kudenko, P.A. Cooke, S. Galeotti, Claudio Santoni, Sugonyaev, B. Angelucci, Alexander Kluge, B. Hallgren, A. Cecchetti, F. Spinella, R. Lollini, Ernesto Migliore, A. Filippi, Roberta Arcidiacono, E. Gushchin, Fascianelli, M. Moulson, Kozhuharov, B Bloch Devaux, M. Sozzi, E. Pedreschi, E. Jones, M. Mirra, L. Glonti, Ilaria Neri, T. Enik, Douglas Bryman, Sergei Fedotov, Alessandro Lonardo, K. J. McCormick, Cristina Biino, J. Bendotti, A. Gianoli, Angelo Biagioni, F. Butin, O. Chikilev, P. F. Dalpiaz, N. Szilasi, Jürgen Engelfried, N. Dixon, Tomáš Husek, R.J. Staley, E. Imbergamo, Bolotov, Russo, T Capus sela, D. T. Madigozhin, Duk, Antonio Cassese, C. Cerri, Matteo Lupi, S. Martellotti, S. Trilov, Yu. Potrebenikov, C. Mandeiro, Giuseppe Latino, A. Blik, E. Gamberini, F. Raffaelli, M. Noy, G. Lehmann Miotto, Babette Döbrich, Obraztsov, L. Gatignon, Tommaso Spadaro, S. Di Lorenzo, R. Lietava, E. Minucci, A.I. Zinchenko, R. Marchevski, Antonino Sergi, M Perrin Terrin, G. Aglieri Rinella, A. Mefodev, I. Mannelli, S. Movchan, C. Lazzeroni, F. Ambrosino, K. Massri, Falaleev, D. Protopopescu, Emilie Maurice, Nicolas Lurkin, Ryjov, G. Nuessle, O. Jamet, M. Morel, E. Menichetti, P. Matak, and G. Saracino
- Subjects
Physics ,Particle physics ,Pi - Published
- 2017
21. The calorimeter of the Mu2e experiment at Fermilab
- Author
-
S. Donati, Yu.I. Davydov, Bertrand Echenard, J. Budagov, S. Miscetti, F. Raffaelli, R. Donghia, A. Saputi, I. Sarra, Luca Morescalchi, V. Tereshchenko, Z. Usubov, F. Grancagnolo, M. Cordelli, G. F. Tassielli, E. Diociaiuti, V. Glagolev, S. Di Falco, F. Cervelli, F. Colao, Frank C. Porter, Ren-Yuan Zhu, G. Corradi, N. Atanov, M. Martini, E. Dané, F. Spinella, V. Baranov, D. G. Hitlin, S. Giovannella, K. T. Flood, Gianantonio Pezzullo, F. Happacher, Tommaso Radicioni, M. Ricci, T. S. Miyashita, P. Murat, Atanov, N., Baranov, V., Budagov, J., Cervelli, F., Colao, F., Cordelli, M., Corradi, G., Dané, E., Davydov, Y. I., Falco, S. Di, Diociaiuti, E., Donati, S., Donghia, R., Echenard, B., Flood, K., Giovannella, S., Glagolev, V., Grancagnolo, F., Happacher, F., Hitlin, D. G., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Murat, P., Pezzullo, G., Porter, F., Raffaelli, F., Radicioni, T., Ricci, M., Saputi, A., Sarra, I., Spinella, F., Tassielli, G., Tereshchenko, V., Usubov, Z., and Zhu, R. Y.
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Cosmic ray ,Electron ,01 natural sciences ,7. Clean energy ,Radiation-hard detector ,Nuclear physics ,Calorimeters ,Radiation-hard detectors ,Instrumentation ,Mathematical Physics ,0103 physical sciences ,Mu2e ,Fermilab ,010306 general physics ,Physics ,Calorimeter ,Muon ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,Orders of magnitude (time) ,High Energy Physics::Experiment ,Lepton - Abstract
The Mu2e experiment at Fermilab looks for Charged Lepton Flavor Violation (CLFV) improving by 4 orders of magnitude the current experimental sensitivity for the muon to electron conversion in a muonic atom. A positive signal could not be explained in the framework of the current Standard Model of particle interactions and therefore would be a clear indication of new physics. In 3 years of data taking, Mu2e is expected to observe less than one background event mimicking the electron coming from muon conversion. Achieving such a level of background suppression requires a deep knowledge of the experimental apparatus: a straw tube tracker, measuring the electron momentum and time, a cosmic ray veto system rejecting most of cosmic ray background and a pure CsI crystal calorimeter, that will measure time of flight, energy and impact position of the converted electron. The calorimeter has to operate in a harsh radiation environment, in a 10-4 Torr vacuum and inside a 1 T magnetic field. The results of the first qualification tests of the calorimeter components are reported together with the energy and time performances expected from the simulation and measured in beam tests of a small scale prototype., Comment: 11 pages, 7 figures, proceedings of 14th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD16) 3 - 6 October 2016 Siena, Italy, Journal of Instrumentation, Volume 12, January 2017 http://stacks.iop.org/1748-0221/12/i=01/a=C01061
- Published
- 2017
22. Measurement of the energy and time resolution of a undoped CsI + MPPC array for the Mu2e experiment
- Author
-
D. Tagnani, F. Happacher, S. Miscetti, G. Corradi, Z. Usubov, R. Donghia, V. Tereshchenko, O. Atanova, M. Cordelli, F. Colao, M. Martini, Gianantonio Pezzullo, S. Di Falco, S. Giovannella, Yu.I. Davydov, I. Sarra, P. Murat, S.R. Soleti, A. Saputi, and Luca Morescalchi
- Subjects
Physics ,Range (particle radiation) ,Physics - Instrumentation and Detectors ,Photon ,010308 nuclear & particles physics ,business.industry ,Physics::Instrumentation and Detectors ,Resolution (electron density) ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,High Energy Physics - Experiment ,Full width at half maximum ,High Energy Physics - Experiment (hep-ex) ,Optics ,0103 physical sciences ,Mu2e ,Cathode ray ,Physics::Accelerator Physics ,010306 general physics ,business ,Instrumentation ,Mathematical Physics ,Energy (signal processing) ,Beam (structure) - Abstract
This paper describes the measurements of energy and time response and resolution of a 3 x 3 array made of undoped CsI crystals coupled to large area Hamamatsu Multi Pixel Photon Counters. The measurements have been performed using the electron beam of the Beam Test Facility in Frascati (Rome, Italy) in the energy range 80-120 MeV. The measured energy resolution, estimated with the FWHM, at 100 MeV is 16.4%. This resolution is dominated by the energy leakage due to the small dimensions of the prototype. The time is reconstructed by fitting the leading edge of the digitized signals and applying a digital constant fraction discrimination technique. A time resolution of about 110 ps at 100 MeV is achieved., Comment: 10 pages, 25 figures
- Published
- 2017
- Full Text
- View/download PDF
23. Geant4 simulations of the lead fluoride calorimeter
- Author
-
A. Fioretti, A. Anastasi, A. Lusiani, Dariush Hampai, C. Gabbanini, A. Liedl, Marin Karuza, G. Piacentino, D. Cauz, O. Escalante, A. Gioiosa, A. Basti, Alexey Alexandrovich Tishchenko, D. Moricciani, N. Raha, G. Pauletta, Franco Bedeschi, S. Mastroianni, L. Santi, Mariantonietta Bartolini, S.B. Dabagov, G. Di Sciascio, Fabrizio Marignetti, Claudio Ferrari, R. Di Stefano, Mikhail N. Strikhanov, A. A. Savchenko, M. Iacovacci, A. Driutti, G. Corradi, Giovanni Cantatore, G. Venanzoni, Savchenko, A. A., Tishchenko, A. A., Dabagov, S. B., Anastasi, A., Venanzoni, G., Strikhanov, M. N., Basti, A., Bedeschi, F., Bartolini, M., Cantatore, Giovanni, Cauz, D., Corradi, G., Di Sciascio, G., Di Stefano, R., Driutti, A., Escalante, O., Ferrari, C., Fioretti, A., Gabbanini, C., Gioiosa, A., Hampai, D., Iacovacci, M., Karuza, M., Liedl, A., Lusiani, A., Marignetti, F., Mastroianni, S., Moricciani, D., Pauletta, G., Piacentino, G. M., Raha, N., Santi, L., Basti, Giulia, Bartolini, Matteo, Cantatore, G., ESCALANTE AGUIRRE, Octavio, Marignetti, Fabrizio, and Lusiani, Alberto
- Subjects
Accelerator Physics (physics.acc-ph) ,Nuclear and High Energy Physics ,Photon ,Physics - Instrumentation and Detectors ,Cherenkov detector ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Radiation ,01 natural sciences ,030218 nuclear medicine & medical imaging ,law.invention ,Nuclear physics ,03 medical and health sciences ,0302 clinical medicine ,Electromagnetic calorimeter ,law ,0103 physical sciences ,Lead-fluoride crystals Electromagnetic calorimeter Geant4 optical processes G-2 experiment Muon experiment ,G-2 experiment ,Geant4 optical processes ,Lead-fluoride crystals ,Muon experiment ,Instrumentation ,Geant4 optical processe ,Cherenkov radiation ,Nuclear and High Energy Physic ,Physics ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Settore FIS/01 - Fisica Sperimentale ,Bremsstrahlung ,Instrumentation and Detectors (physics.ins-det) ,Computational Physics (physics.comp-ph) ,Lead-fluoride crystal ,Transition radiation ,Physics - Accelerator Physics ,High Energy Physics::Experiment ,Physics - Computational Physics ,Storage ring - Abstract
In this paper we simulate the emission by charged particles in complex structures with help of Geant4. We take into account Cherenkov radiation, transition radiation, bremsstrahlung, pair production and other accompanying processes. As an application we investigate the full size electromagnetic calorimeter for the muon g-2 experiment at Fermilab. A calorimeter module (24 are expected in the experiment) consists of a Delrin front panel for installation of the laser calibration system, 54 PbF2 Cherenkov crystals wrapped by the black Millipore paper, and silicon photo-multiplier sensors. We report here on a simulation of radiation from positrons passing through the calorimeter system. We carry out the simulation using Geant4 toolkit, which provides a complete set of tools for all areas of detector simulation: geometry, tracking, detector response, run, event and track management, and visualization. We consider Cherenkov photons expansion when a positron moves down through the calorimeter at the arbitrary angle of incidence. Both spectral and angular distributions of Cherenkov optical photons in different parts of the calorimeter system have been evaluated as well as the transition radiation and pre-shower distributions from the panel and from the Al vacuum chamber of the storage ring. (The paper is in progress)., Comment: The 7th International Conference "Channeling 2016 - Charged & Neutral Particles Channeling Phenomena"/ in progress
- Published
- 2017
24. The Fermilab Muon g-2 experiment: Laser calibration system
- Author
-
S.B. Dabagov, S. Mastroianni, M. Bartolini, L. Santi, Claudio Ferrari, A. Driutti, A. Nath, G. Di Sciascio, D. Cauz, R. Di Stefano, A. Liedl, N. Raha, Fabrizio Marignetti, M. Iacovacci, O. Escalante, Marin Karuza, A. Fioretti, A. Anastasi, D. Moricciani, Dariush Hampai, Giovanni Cantatore, G. Venanzoni, G. Piacentino, A. Basti, F. Bedeschi, G. Corradi, A. Lusiani, G. Pauletta, C. Gabbanini, A. Gioiosa, Karuza, M., Anastasi, A., Basti, A., Bedeschi, F., Bartolini, M., Cantatore, G., Cauz, D., Corradi, G., Dabagov, S., Di Sciascio, G., Di Stefano, R., Driutti, A., Escalante, O., Ferrari, C., Fioretti, A., Gabbanini, C., Gioiosa, A., Hampai, D., Iacovacci, M., Liedl, A., Lusiani, A., Marignetti, F., Mastroianni, S., Moricciani, D., Nath, A., Pauletta, G., Piacentino, G. M., Raha, N., Santi, L., Venanzoni, G., Cantatore, Giovanni, Sciascio, G. Di, and Stefano, R. Di
- Subjects
Particle physics ,sources ,magnetic moment ,Instrumentation ,Physics beyond the Standard Model ,Detector alignment and calibration methods (lasers, sources, particle-beams) ,Measure (physics) ,Laser ,Cherenkov detectors ,Lasers ,Optics ,Mathematical Physics ,Electron ,muon dipole moment ,01 natural sciences ,muon ,0103 physical sciences ,Calibration ,laser calibration ,Detector alignment and calibration methods (lasers, sources ,Fermilab ,010306 general physics ,Physics ,Calibration system ,Muon ,010308 nuclear & particles physics ,particle-beams) ,Detector alignment and calibration methods (lasers ,Dipole ,Calibration system, muon, magnetic moment ,Optic ,ELECTRON ,Cherenkov detector - Abstract
The anomalous muon dipole magnetic moment can be measured (and calculated) with great precision thus providing insight on the Standard Model and new physics. Currently an experiment is under construction at Fermilab (U.S.A.) which is expected to measure the anomalous muon dipole magnetic moment with unprecedented precision. One of the improvements with respect to the previous experiments is expected to come from the laser calibration system which has been designed and constructed by the Italian part of the collaboration (INFN). Furthermore, an emphasis of this paper will be on the calibration system that is in the final stages of construction as well as the experiment which is expected to start data taking this year.
- Published
- 2017
25. Electron beam test of key elements of the laser-based calibration system for the muon g - 2 experiment
- Author
-
A. Gioiosa, A. Basti, G. Pauletta, R. Di Stefano, D. Moricciani, D. W. Hertzog, D. Cauz, Claudio Ferrari, A.T. Fienberg, A. Driutti, S.B. Dabagov, M. Bartolini, M. Iacovacci, Giovanni Cantatore, G. Corradi, G. Di Sciascio, O. Escalante, N. Raha, A. Liedl, J. Kaspar, G. Venanzoni, L. Santi, S. Mastroianni, G. M. Piacentino, Dariush Hampai, E. Rossi, A. Fioretti, A. Anastasi, Marin Karuza, Fabrizio Marignetti, A. Lusiani, C. Gabbanini, Franco Bedeschi, Anastasi, A., Basti, A., Bedeschi, F., Bartolini, M., Cantatore, G., Cauz, D., Corradi, G., Dabagov, S., Di Sciascio, G., Di Stefano, R., Driutti, A., Escalante, O., Ferrari, C., Fienberg, A. T., Fioretti, A., Gabbanini, C., Gioiosa, A., Hampai, D., Hertzog, D. W., Iacovacci, M., Karuza, M., Kaspar, J., Liedl, A., Lusiani, A., Marignetti, F., Mastroianni, S., Moricciani, D., Pauletta, G., Piacentino, G. M., Raha, N., Rossi, E., Santi, L., Venanzoni, G., Cantatore, Giovanni, and Lusiani, Alberto
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Electromagnetic calorimeter ,Laser ,Muon ,Instrumentation ,Physics::Instrumentation and Detectors ,Physics::Optics ,FOS: Physical sciences ,01 natural sciences ,law.invention ,Nuclear physics ,law ,0103 physical sciences ,Calibration ,Fermilab ,010306 general physics ,Nuclear and High Energy Physic ,Physics ,010308 nuclear & particles physics ,Settore FIS/01 - Fisica Sperimentale ,Instrumentation and Detectors (physics.ins-det) ,Calorimeter ,Measuring instrument ,Physics::Accelerator Physics ,Beam (structure) - Abstract
We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be provided by the laser and the stability of the calibration system components., Comment: Submitted to Nuclear Instrument and Methods A
- Published
- 2017
26. Design and status of the Mu2e Calorimeter
- Author
-
S. Donati, Gianantonio Pezzullo, G. Corradi, Luca Morescalchi, N. Atanov, S. Giovannella, Yu.I. Davydov, J. Budagov, F. Raffaelli, V. Glagolev, S. Miscetti, A. Saputi, S. Di Falco, M. Martini, F. Cervelli, I. Sarra, M. Cordelli, F. Happacher, G. F. Tassielli, E. Diociaiuti, F. Colao, E. Pedreschi, B. Echenard, F. Grancagnolo, D. G. Hitlin, F. Spinella, R. Donghia, V. Tereshchenko, Ren-Yuan Zhu, Z. Usubov, M. Ricci, T. S. Miyashita, P. Murat, F. C. Porter, V. A. Baranov, Atanov, N., Baranov, V., Budagov, J., Davydov, Y. I., Glagolev, V., Tereshchenko, V., Usubov, Z., Cervelli, F., Falco, S. D., Donati, S., Morescalchi, L., Pedreschi, E., Pezzullo, G., Raffaelli, F., Spinella, F., Colao, F., Cordelli, M., Corradi, G., Diociaiuti, E., Donghia, R., Giovannella, S., Happacher, F., Martini, M., Miscetti, S., Ricci, M., Saputi, A., Sarra, I., Echenard, B., Hitlin, D. G., Miyashita, T., Porter, F., Zhu, R. Y., Grancagnolo, F., Tassielli, G., and Murat, P.
- Subjects
Range (particle radiation) ,Materials science ,Calorimeter (particle physics) ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Radiation ,01 natural sciences ,Optics ,Silicon photomultiplier ,0103 physical sciences ,Mu2e ,Cathode ray ,Calibration ,business ,010303 astronomy & astrophysics ,Beam (structure) - Abstract
The Mu2e calorimeter is composed by $\sim 1400$ un- doped CsI crystals coupled to large area UV extended Silicon Photomultipliers(SIPMs) arranged intwo annular disks. This calorimeter has to provide precise information on energy, timing and position resolution. It should also be fast enough towithstand the high rate background and it mustoperate and survive in a high radiation environment. All steps done for the construction and test of the Module -0 prototype, that is an array of51 pre-production crystals, are reported. The Module -0 was exposed to an electron beam in the energy range around 100 MeV at the BTF (Beam Test Facility) inFrascati. Preliminary results of timing and energy resolution at normal incidence are shown.
- Published
- 2017
- Full Text
- View/download PDF
27. Recent results and prospects for NA62 experiment
- Author
-
G. Paoluzzi, Pierre Jarron, Marian Krivda, G. Ruggiero, Christopher John Parkinson, M. Veltri, Evgueni Goudzovski, E. Pedreschi, Alexander Kluge, R. Aliberti, A. Romano, Fausto Sargeni, G. Collazuol, A. Norton, Roland Winston, F. Bucci, A. Cecchetti, E. Jones, M. Mirra, Milena Misheva, A P Ostankov, E. Minucci, F. Spinella, R. Lollini, L. Glonti, P. S. Cooper, T. Spadaro, Alessandro Lonardo, L. Peruzzo, B. Bloch-Devaux, G. Salina, Andrea Catinaccio, A. Antonelli, Francesco Gonnella, R. Volpe, Z. Kucerova, V. Russo, B. Velghe, K. J. McCormick, H. O. Danielsson, F. Costantini, Tomas Blazek, A.I. Zinchenko, A. Sturgess, D. Soldi, A. Cotta Ramusino, E. Gamberini, F. Marchetto, Piero Vicini, G. Mannocchi, V. Fascianelli, S. Movchan, C. Lazzeroni, F. Ambrosino, M. Bragadireanu, A. Khudyakov, Paolo Valente, E. Capitolo, S. Chiozzi, A. Fucci, L. Fulton, David Lomidze, Luca Pontisso, S. Padolski, O. Yushchenko, P. Lichard, R. Marchevski, Antonino Sergi, F. Raffaelli, P. Sutcliffe, M. Koval, S. Venditti, A. Shaikhiev, F. Cotorobai, Lau Gatignon, M. Boretto, C. Capoccia, O. Chikilev, S. Kholodenko, Tomáš Husek, F. Hahn, A. Mefodev, Andrea Biagioni, D. Pietreanu, B. Angelucci, M. Fiorini, E. Iacopini, V. Falaleev, Dave Britton, J. R. Fry, M. Lenti, G. Lamanna, P.A. Cooke, K. Massri, A. Goncalves Martins, I. Mannelli, T. Numao, D. Tagnani, L. Iacobuzio, Emilio Leonardi, A. Ceccucci, B. Checcucci, Cristina Biino, Andrea Bizzeti, M. Vormstein, V. Palladino, D. T. Madigozhin, P. Cenci, V. Samsonov, M. Sozzi, I. Polenkevich, A. Khotyantsev, V. Elsha, V. Bolotov, J. Degrange, J. Kaplon, V. Obraztsov, R. Fantechi, Yu. Kudenko, L. Di Lella, Ilaria Neri, N. Dixon, R. Guida, N. Estrada, Antonio Cassese, Mario Giorgi, G. Lehmann-Miotto, S. Martellotti, Vincenzo Bonaiuto, D. Di Filippo, P. Petrov, T. Enik, Douglas Bryman, Mauro Piccini, Sergei Fedotov, Roberta Arcidiacono, David Hutchcroft, T. Capussela, R.J. Staley, E. Imbergamo, Paolo Massarotti, Konrad Kleinknecht, Mattia Barbanera, E. Cortina Gil, Vladimir Ryjov, J. Bendotti, Yu. Kiryushin, D. J. Munday, T. Vassilieva, P. F. Dalpiaz, V K Semenov, N. De Simone, L. Bician, Luca Federici, E. Gushchin, Matteo Lupi, R. Lenci, F. Perez Gomez, A. Sotnikov, R. Page, P. Wertelaers, Claudio Santoni, Vladimir Kekelidze, F. Newson, C. Cerri, A. Mapelli, Yu. Potrebenikov, S. Trilov, D. Coward, M. Perrin-Terrin, C. Mandeiro, B. Wrona, Giuseppe Latino, F. Herman, M. Valdata-Nappi, S. Shkarovskiy, Mauro Raggi, N. Szilasi, G. D'Agostini, Babette Döbrich, Roberto Piandani, V. Kozhuharov, H. D. Wahl, N. Doble, M. Zamkovsky, S. Giudici, Georgi P. Georgiev, Viacheslav Duk, J. B. Dainton, Jürgen Engelfried, G. Maire, A. Gianoli, Roberto Ammendola, M. Pepe, Roberto Ciaranfi, V. Cerny, A. Conovaloff, S. Balev, F. Butin, M. Morel, Helen F Heath, A. Salamon, G. Khoriauli, M. Serra, Rainer Wanke, E. Menichetti, P. Matak, G. Saracino, Petra Riedler, S. Gallorini, P. Rubin, J. L. Fu, O. Hutanu, M. Vasile, I. O. Skillicorn, S. Di Lorenzo, R. Lietava, A. Winhart, G. Aglieri Rinella, A. Blik, M. Noy, G. Anzivino, J. Morant, G. Corradi, M. Moulson, Karol Kampf, J. Kunze, I. Azhinenko, N. A. Molokanova, M. Napolitano, J. Pinzino, Fabrizio Petrucci, Leander Litov, A. Kleimenova, G. Britvich, S. Galeotti, B. Hallgren, D. Protopopescu, Emilie Maurice, Nicolas Lurkin, M. B. Brunetti, V. Sougonyaev, G. Nuessle, O. Jamet, Ambrosino, F., Corvino, M., Massarotti, P., Mirra, M., Napolitano, M., and Saracino, G.
- Subjects
Accelerator Physics (physics.acc-ph) ,Nuclear and High Energy Physics ,Particle physics ,Physics - Instrumentation and Detectors ,Meson ,Physics beyond the Standard Model ,Measure (physics) ,Physics - Accelerator Physics ,FOS: Physical sciences ,kaons ,NA62 experiment ,01 natural sciences ,NA62 ,Settore FIS/04 - Fisica Nucleare e Subnucleare ,Nuclear physics ,rare decays ,0103 physical sciences ,Detectors and Experimental Techniques ,010306 general physics ,Physics ,Large Hadron Collider ,010308 nuclear & particles physics ,Branching fraction ,High Energy Physics::Phenomenology ,Instrumentation and Detectors (physics.ins-det) ,Kaon physics ,CERN SPS ,High Energy Physics::Experiment ,kaon - Abstract
The $K^+\rightarrow \pi^+ \nu \bar \nu$ decay is one of the theoretically cleanest meson decay where to look for indirect effects of new physics complementary to LHC searches. The NA62 experiment at CERN is designed to measure the branching ratio (BR) of this decay with 10\% precision. NA62 has been successfully launched in October 2014, took data in pilot runs in 2014 and 2015 reaching the final designed beam intensity. The NA62 experimental setup is illustrated and quality of data acquired in view of the final measurement is reported. The $K^+\rightarrow \pi^+ \nu \bar \nu$ decay is theoretically one of the cleanest meson decays and so a good place to look for indirect effects of new physics complementary to LHC searches. The NA62 experiment at CERN is designed to measure the branching ratio of this decay with 10\% precision. NA62 was commissioned in October 2014, took data in pilot runs in 2014 and 2015. The NA62 experimental setup is illustrated and data quality is reported. The K+→π+νν‾ decay is theoretically one of the cleanest meson decays and so a good place to look for indirect effects of new physics complementary to LHC searches. The NA62 experiment at CERN is designed to measure the branching ratio of this decay with 10% precision. NA62 was commissioned in October 2014, took data in pilot runs in 2014 and 2015. The NA62 experimental setup is illustrated and data quality is reported.
- Published
- 2016
28. Energy and time resolution for a LYSO matrix prototype of the Mu2e experiment
- Author
-
P. Ott, F. Colao, Gianantonio Pezzullo, T. S. Miyashita, F. Happacher, Andy Thomas, S. Giovannella, M. Martini, G. Corradi, Luca Morescalchi, Y. Davydov, M. Cordelli, G. F. Tassielli, K. T. Flood, V. A. Baranov, I. Sarra, S. Miscetti, N. Atanov, D. G. Hitlin, V. Tereshchenko, S.R. Soleti, A. Saputi, E. Dané, V. Glagolev, Atanov, N., Baranov, V., Colao, F., Cordelli, M., Corradi, G., Dané, E., Davydov, Yu. I., Flood, K., Giovannella, S., Glagolev, V., Happacher, F., Hitlin, D. G., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Ott, P., Pezzullo, G., Saputi, A., Sarra, I., Soleti, S. R., Tassielli, G., Tereshchenko, V., and Thomas, A.
- Subjects
Scintillating crystal ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Electron ,Calorimetry ,01 natural sciences ,Lyso ,High Energy Physics - Experiment ,Nuclear physics ,Matrix (mathematics) ,High Energy Physics - Experiment (hep-ex) ,Optics ,0103 physical sciences ,Mu2e ,Instrumentation ,Nuclear and High Energy Physic ,010302 applied physics ,Physics ,Range (particle radiation) ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,business.industry ,Avalanche photodiode ,Instrumentation and Detectors (physics.ins-det) ,Physics::Accelerator Physics ,business ,Energy (signal processing) - Abstract
We have measured the performances of a LYSO crystal matrix prototype tested with electron and photon beams in the energy range 60$-$450 MeV. This study has been carried out to determine the achievable energy and time resolutions for the calorimeter of the Mu2e experiment., 2 pages, 3 figures, 13th Pisa Meeting on Advanced Detectors
- Published
- 2016
29. Design and status of the Mu2e electromagnetic calorimeter
- Author
-
Luca Morescalchi, R. Donghia, V. Tereshchenko, T. S. Miyashita, F. Colao, D. Pasciuto, M. Cordelli, G. F. Tassielli, I. Sarra, B. Echenard, P. Murat, F. C. Porter, V. A. Baranov, N. Atanov, D. G. Hitlin, S. Donati, S.R. Soleti, A. Saputi, Z. Usubov, M. Martini, R. Carosi, S. Di Falco, F. Cervelli, Gianantonio Pezzullo, Ren-Yuan Zhu, G. Corradi, J. Budagov, F. Happacher, S. Giovannella, Yu.I. Davydov, E. Dané, V. Glagolev, F. Grancagnolo, K. T. Flood, S. Miscetti, F. Spinella, Atanov, N., Baranov, V., Budagov, J., Carosi, R., Cervelli, F., Colao, F., Cordelli, M., Corradi, G., Dané, E., Davydov, Yu. I., Di Falco, S., Donati, S., Donghia, R., Echenard, B., Flood, K., Giovannella, S., Glagolev, V., Grancagnolo, F., Happacher, F., Hitlin, D. G., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Murat, P., Pasciuto, D., Pezzullo, G., Porter, F., Saputi, A., Sarra, I., Soleti, S. R., Spinella, F., Tassielli, G., Tereshchenko, V., Usubov, Z., and Zhu, R. Y.
- Subjects
Scintillating crystal ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,APDS ,Physics::Instrumentation and Detectors ,Silicon photomultipliers ,FOS: Physical sciences ,Calorimetry ,Silicon photomultiplier ,7. Clean energy ,01 natural sciences ,Particle identification ,law.invention ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,law ,Scintillating crystals ,0103 physical sciences ,Mu2e ,Fermilab ,010306 general physics ,Instrumentation ,Nuclear and High Energy Physic ,Physics ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Avalanche photodiodes ,Avalanche photodiode ,Instrumentation and Detectors (physics.ins-det) ,Lepton flavour violation - Abstract
The Mu2e experiment at Fermilab aims at measuring the neutrinoless conversion of a negative muon into an electron and reach a single event sensitivity of 2.5x10^{-17} after three years of data taking. The monoenergetic electron produced in the final state, is detected by a high precision tracker and a crystal calorimeter, all embedded in a large superconducting solenoid (SD) surrounded by a cosmic ray veto system. The calorimeter is complementary to the tracker, allowing an independent trigger and powerful particle identification, while seeding the track reconstruction and contributing to remove background tracks mimicking the signal. In order to match these requirements, the calorimeter should have an energy resolution of O(5)% and a time resolution better than 500 ps at 100 MeV. The baseline solution is a calorimeter composed of two disks of BaF2 crystals read by UV extended, solar blind, Avalanche Photodiode (APDs), which are under development from a JPL, Caltech, RMD consortium. In this paper, the calorimeter design, the R&D studies carried out so far and the status of engineering are described. A backup alternative setup consisting of a pure CsI crystal matrix read by UV extended Hamamatsu MPPC's is also presented., 5 pages, 6 figures
- Published
- 2016
- Full Text
- View/download PDF
30. Experimental tests of the trigger prototype for the AMADEUS experiment based on Sci-Fi read by MPPC
- Author
-
K. Piscicchia, A. Romero Vidal, D. Tagnani, Alessandro Scordo, A. Rizzo, A. d'Uffizi, O. Vazquez Doce, M. Poli Lener, G. Corradi, Catalina Curceanu, Carolina Berucci, E. Sbardella, and M. Bazzi
- Subjects
Physics ,Nuclear and High Energy Physics ,Photon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Detector ,Semiconductor device ,01 natural sciences ,Charged particle ,Photodiode ,law.invention ,Nuclear physics ,Optics ,law ,0103 physical sciences ,Geiger counter ,Electronics ,010306 general physics ,business ,Collider ,Instrumentation - Abstract
The Multi-Pixel Photon Counter (MPPC) detectors consist of hundreds of micro silicon Avalanche PhotoDiodes (APD) working in Geiger mode. The high gain and the small dimensions typical of these devices, together with their good performances in magnetic field, make them ideal readout devices for scintillating fibers as trigger detectors in particle and nuclear physics experiments like AMADEUS, where such a system is planned to be used to trigger on charged kaons. A prototype setup for this trigger system, consisting of 5 scintillating fibers readout by 10 MPPCs, was built and tested in laboratory and mounted inside the DA Φ NE collider at LNF-Frascati to measure the back-to-back K + K − pairs emitted in the Φ - decay processes. The ad hoc readout electronics was designed and realized at Laboratori Nazionali di Frascati (INFN). A 64 channels setup, with a new dedicated electronics, was then built and characterized in the laboratory. The results of the tests are presented and discussed.
- Published
- 2012
31. CHANTI: a Fast and Efficient Charged Particle Veto Detector for the NA62 Experiment at CERN
- Author
-
G. Saracino, L. Roscilli, D. Tagnani, G. Corradi, Maddalena Napolitano, D. Di Filippo, Vito Palladino, T. Capussela, Marco Mirra, P. Massarotti, A. Vanzanella, F. Ambrosino, U. Paglia, Ambrosino, Fabio, Capussela, Tiziana, Filippo, D. Di, Massarotti, Paolo, Mirra, Marco, Napolitano, Marco, Palladino, Vito, Saracino, Giulio, Roscilli, L., Vanzanella, A., Corradi, G., Tagnani, D., and Paglia, U.
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Scintillator ,NA62 experiment ,01 natural sciences ,Particle identification ,Particle detector ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Silicon photomultiplier ,Optics ,0103 physical sciences ,Straw tracker ,Detectors and Experimental Techniques ,010306 general physics ,Instrumentation ,Mathematical Physics ,Physics ,Scintillation ,010308 nuclear & particles physics ,business.industry ,Detector ,Instrumentation and Detectors (physics.ins-det) ,High Energy Physics::Experiment ,business - Abstract
This work has been performed into the frame of the NA62 experiment at CERN that aims at measuring the Branching-Ratio of the ultra-rare kaon decay K+→π+ nu nubar with 10% uncertainty - using an unseparated kaon beam of 75GeV/c - in order to test the Standard Model (SM), to look for physics beyond SM and to measure the |Vtd| element of the Cabibbo-Kobayashi-Maskawa (CKM) flavor mixing matrix. Backgrounds, which are up to 10^10 times higher than the signal, will be suppressed by an accurate measurement of the momentum of the K+ (with a silicon beam tracker named GigaTracker) and the π+ (with a straw tracker) and by a complex system of particle identification and veto detectors. A critical background can be induced by inelastic interactions of the hadron beam with the GigaTracker. Pions produced in these interactions, emitted at low angle, can reach the straw tracker and mimic a kaon decay in the fiducial region, if no other track is detected. In order to suppress this background a CHarged track ANTIcounter (CHANTI) has been designed and built in Naples. The detector consists of a series of six guard counters surrounding the beam and placed immediately after the silicon tracker. Each guard counter is made up of two layers, X and Y. Y (X) layer is composed of 24 scintillator bars arranged parallel to X (Y) direction. Each bar is triangularly shaped with a 1.7 mm diameter hole. In order to collect the light of the scintillator, a wavelength shifting (WLS) fiber is inserted into the hole of each bar. The fiber is mirrored at one side and is read by a Hamamatsu silicon photomultiplier (SiPM) at the other side. In this thesis the design philosophy, the construction procedure and the quality tests, adopted during the assembly of the detector, are reported. A careful calibration procedure of the frontend electronics has been setup. It is made up of two different stage. The first one is used to set bias voltage of the SiPMs and to read their current; it also gives a fast amplification of the signal before passing them to the second stage in which a comparator gives an LVDS output of duration equal to the time a signal is above a given threshold. A simulation of the scintillation bar, that includes all the optical processes inside this single channel of the CHANTI, and the complete digitization of the signals have been developed. The performance of the detector have been evaluated both in the laboratory facilities in Naples, with cosmic rays, and in the experimental area of the NA62 experiment with real beam condition. In particular the efficiency, time and space resolutions and accidental veto rate of the detector have been determined analysing the data collected during the first NA62 physics run in 2015.
- Published
- 2015
32. Applications in beam diagnostics with triple GEM detectors
- Author
-
M. Poli Lener, Marco Pistilli, D. Tagnani, G. Corradi, P. Valente, Bruno Buonomo, Fabrizio Murtas, and Giovanni Mazzitelli
- Subjects
Physics ,High rate ,Nuclear and High Energy Physics ,Neutron monitor ,Muon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Detector ,Readout electronics ,Time resolution ,Space resolution ,01 natural sciences ,Optics ,0103 physical sciences ,Physics::Accelerator Physics ,Detectors and Experimental Techniques ,010306 general physics ,business ,Instrumentation ,Beam (structure) - Abstract
The development of different detectors based on GEM technology, mainly to be used for beam diagnostic, is described. The use of GEM foils for detector construction started in Frascati on 2002 with the R&D for LHCb Muon Chambers placed at small angle. Ever since several triple GEM chambers have been built for different applications. The results obtained in several beam tests have shown high performances: high rate capability ( > 50 MHz / cm 2 ), good time resolution ( ∼ 4 ns ), good space resolution O ( 200 μ m ) , and good aging resistance after 2 C / cm 2 of integrated charge. Recent developments on readout electronics and power supply for portable detectors are presented.
- Published
- 2010
33. Kaonic helium-4 X-ray measurement in SIDDHARTA
- Author
-
T. Ishiwatari, G. A. Beer, Michael Cargnelli, Johann Marton, Florin Sirghi, B. Girolami, A. Rizzo, Diana Sirghi, Hexi Shi, Luca Bombelli, A. Tudorache, Alessandro Scordo, A. Romero Vidal, Dorel Pietreanu, T. Ponta, P. Kienle, V. Tudorache, H. Tatsuno, C. Guaraldo, G. Corradi, A. M. Bragadireanu, Tommaso Frizzi, V. Lucherini, A. Longoni, M. Iliescu, Shinji Okada, A. d'Uffizi, O. Vazquez Doce, Ryugo S. Hayano, Catalina Curceanu, Carlo Fiorini, M. Bazzi, P. Levi Sandri, Johann Zmeskal, Eberhard Widmann, F. Ghio, and Masahiko Iwasaki
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Kaonic hydrogen ,Strong interaction ,X-ray ,Compton scattering ,chemistry.chemical_element ,law.invention ,Nuclear physics ,Helium-4 ,chemistry ,law ,High Energy Physics::Experiment ,Atomic physics ,Collider ,Helium ,Exotic atom - Abstract
The kaonic helium-4 3 d → 2 p X-ray transition was measured in a gaseous target, where Compton scattering in helium is negligible. The X-rays were detected with large-area Silicon Drift Detectors (SDDs) using the timing information of the K + K − pairs produced by ϕ decays at the DAΦNE e + e − collider. A new value of the strong interaction shift of the kaonic 4He 2p state was determined to be 0 ± 6 (stat) ± 2 (syst) eV , which confirms the recently obtained result by the KEK-PS E570 group.
- Published
- 2009
34. Prospects for $K^+\rightarrow \pi^+ \nu \bar\nu$ observation at CERN in NA62
- Author
-
R. Fantechi, J. R. Fry, C. Capoccia, M. Lenti, E. Cortina Gil, A. Goncalves Martins, A. Fucci, B. Bloch-Devaux, G. Salina, Andrea Catinaccio, T. Capussela, A. Gianoli, G. Mannocchi, Alexander Kluge, A. Pardons, D. E. Hutchcroft, S. Padolski, O. Yushchenko, E. Santovetti, Konrad Kleinknecht, Emilio Leonardi, I. Polenkevich, Rainer Wanke, R. Lenci, Samsonov, F. Butin, A. Cecchetti, F. Spinella, J. Kunze, A. Sotnikov, Kekelidze, Yu. Kudenko, P. Rubin, A. Winhart, F. Herman, Russo, D. T. Madigozhin, Duk, I. Azhinenko, N. A. Molokanova, D. Coward, M. Valdata-Nappi, P. Wertelaers, Mauro Raggi, S. Kholodenko, Cerny, L Di Lella, A. I. Makarov, F. Hahn, Yu. Potrebenikov, Alessandro Lonardo, O. Chikilev, Antonio Cassese, L. Gatignon, Vassilieva, Nicolo Cartiglia, Palladino, G. Lamanna, M. Fiorini, G Aglieri Rinella, M. Napolitano, P. F. Dalpiaz, P.A. Cooke, A. Blik, Carassiti, L. Fulton, David Lomidze, I. Mannelli, H. D. Wahl, G. Maire, M. Noy, P. S. Cooper, P. Sutcliffe, I. Popov, D. J. Munday, D. Tagnani, Mauro Piccini, Elsha, Marcello Pivanti, F. Newson, Semenov, E. Iacopini, S. Shkarovskiy, J. Pinzino, Fabrizio Petrucci, Roberta Arcidiacono, M. Zamkovsky, Cristina Biino, J. Degrange, J. Kaplon, D. Di Filippo, Leander Litov, Petra Riedler, Paolo Massarotti, G. Britvich, Francesco Gonnella, Tomas Blazek, G. Mazza, R. Lietava, N. De Simone, Roberto Ciaranfi, Helen F Heath, F. Bucci, Milena Misheva, A. Cotta Ramusino, M. Bragadireanu, J. B. Dainton, N. Szilasi, Karjavin, Jürgen Engelfried, H. O. Danielsson, N. Dixon, E. Gushchin, A. Khudyakov, Paolo Valente, Sebastiano Fabio Schifano, P. Petrov, P. Matak, M. Perrin-Terrin, G. Saracino, Tommaso Spadaro, A. Antonelli, R.J. Staley, G. D'Agostini, Sougonyaev, Pierre Jarron, B. Hallgren, F. Costantini, Bolotov, D. Protopopescu, M. Koval, S. Venditti, Marian Krivda, Kozhuharov, M. Veltri, Nicolas Lurkin, M. Pepe, S. Movchan, C. Lazzeroni, M. Sozzi, R. Aliberti, A. Norton, Roland Winston, G. Anzivino, G. Nuessle, F. Ambrosino, O. Jamet, J. Morant, B. Angelucci, Ryjov, N. H. Brook, Evgueni Goudzovski, G. Ruggiero, K. Massri, Buescher, Dave Britton, E. Pedreschi, Rupert Leitner, A. Romano, Fausto Sargeni, G. Collazuol, F Perez-Gomez, M. Moulson, A. Salamon, M. Morel, Falaleev, M. Mirra, Karol Kampf, T. Enik, E. Menichetti, M. Serra, B. Velghe, L. Glonti, F. Marchetto, Luca Federici, E. Capitolo, A. Ceccucci, S. Gallorini, S. Balev, Andrea Bizzeti, Yu. Kiryushin, M. Statera, A. Mapelli, M. Vormstein, P. Cenci, R. Guida, S. Giudici, R. Page, B. Wrona, Bonaiuto, G. Khoriauli, N. Doble, Matei Eugen Vasile, J. Bendotti, Angelo Biagioni, Roberto Piandani, D. Pietreanu, C. Cerri, G. Corradi, Obraztsov, F. Raffaelli, Antonino Sergi, A.I. Zinchenko, and P. Lichard
- Subjects
Physics ,Particle physics ,Large Hadron Collider ,Bar (music) ,Physics beyond the Standard Model ,NA62 experiment ,Standard Model - Abstract
The rare decay K + ! p + n n is an excellent process to probe Standard Model and indirectly search for new physics, complementary to the ongoing direct LHC searches. The NA62 experiment at CERN SPS aims to collect about 100 of such events in two years of data taking, keeping the background at the level of 10%. The physics motivation, experimental technique and status of the experiment are presented
- Published
- 2015
35. Measurement of time resolution of the Mu2e LYSO calorimeter prototype
- Author
-
M. Martini, F. Colao, D. G. Hitlin, E. Dané, V. A. Baranov, T. S. Miyashita, Gianantonio Pezzullo, M. Cordelli, G. F. Tassielli, G. Corradi, V. Glagolev, Luca Morescalchi, I. Sarra, V. Tereshchenko, S. Giovannella, Yu.I. Davydov, S. Miscetti, F. Happacher, N. Atanov, K. T. Flood, S.R. Soleti, A. Saputi, Atanov, N., Baranov, V., Colao, F., Cordelli, M., Corradi, G., Dané, E., Davydov, Yu. I., Flood, K., Giovannella, S., Glagolev, V., Happacher, F., Hitlin, D. G., Martini, M., Miscetti, S., Miyashita, T., Morescalchi, L., Pezzullo, G., Saputi, A., Sarra, I., Soleti, S. R., Tassielli, G., and Tereshchenko, V.
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,APDS ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Calorimetry ,01 natural sciences ,Lyso ,law.invention ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,law ,0103 physical sciences ,Mu2e ,Electron beam processing ,Timing ,010306 general physics ,LYSO crystal ,Instrumentation ,Nuclear and High Energy Physic ,Physics ,Mu2e experiment ,010308 nuclear & particles physics ,APD ,Instrumentation and Detectors (physics.ins-det) ,Avalanche photodiode ,Calorimeter ,Physics::Accelerator Physics ,Beam (structure) - Abstract
In this paper we present the time resolution measurements of the Lutetium-Yttrium Oxyorthosilicate (LYSO) calorimeter prototype for the Mu2e experiment. The measurements have been performed using the $e^-$ beam of the Beam Test Facility (BTF) in Frascati, Italy in the energy range from 100 to 400 MeV. The calorimeter prototype consisted of twenty five 30x30x130 mm$^3$, LYSO crystals read out by 10x10 mm$^2$ Hamamatsu Avalanche Photodiodes (APDs). The energy dependence of the measured time resolution can be parametrized as $\sigma_{t}(E)=a/\sqrt{E/\mathrm{GeV}} \oplus b$, with the stochastic and constant terms $a=(51\pm1)$ ps and $b=(10\pm4)$ ps, respectively. This corresponds to the time resolution of ($162\pm4$) ps at 100 MeV., Comment: 18 pages, 14 figures, accepted for the journal Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
- Published
- 2015
36. The Measurement of the Anomalous Magnetic Moment of the Muon at Fermilab
- Author
-
R. Chislett, J. Carroll, D. Cauz, Andrew Smith, M. Lee, A. Anastasi, E. Hazen, M. Eads, G. Pauletta, R. Osofsky, B. Quinn, R. Fatemi, I. Logashenko, S. Baessler, D.A. Sweigart, N. A. Kuchinskiy, M. W. Smith, D. Still, Yannis K. Semertzidis, W. Gohn, K. L. Giovanetti, V. Tishchenko, L. Welty-Rieger, R. Di Stefano, C. Fu, M. Iacovacci, E. Barzi, V. Volnykh, J. F. Ostiguy, D. W. Hertzog, T. Stuttard, V. A. Baranov, C. J. G. Onderwater, Michael Syphers, G. Luo, V. P. Druzhinin, E. Won, P. T. Debevec, C. Yoshikawa, J. Grange, Martin Fertl, Stephen Maxfield, F. Azfar, A. Epps, L Li, P. Winter, C. Johnstone, A. Fioretti, B. Drendel, K. T. Pitts, M R M Warren, L. K. Gibbons, D. Stöckinger, M. Whitley, Donald B. Rubin, M. Rominsky, J. Crnkovic, T. P. Gorringe, T. Walton, C. Ferrari, Z. Meadows, G. Venanzoni, Thomas Teubner, Nicholas A. Pohlman, S. Haciomeroglu, M. Gaisser, M. Wormald, B. Casey, Frederick Gray, H. Freidsam, Marin Karuza, K. R. Lynch, P. Kammel, S. Henry, S.B. Dabagov, A. L. Lyon, C. Schlesier, E. Motuk, Yuri F. Orlov, D. Allspach, N. Rider, T. J. V. Bowcock, B. Abi, N. Kinnaird, D. Babusci, A. Para, R. M. Carey, A. de Gouvea, J. Johnstone, J. P. Miller, S. Lee, A.T. Fienberg, G. Di Sciascio, Y. Kim, H. Schellman, L.P. Alonzi, H Yang, H. Kamal Sayed, B. L. Roberts, Edward J. Swanson, V. N. Duginov, E. Ramberg, E. Frlez, N. S. Froemming, I. Kourbanis, J. Mott, L. Santi, D. Kawall, Giovanni Cantatore, N. V. Khomutov, G. Corradi, D. Flay, C. C. Polly, Nicholas Eggert, S. Marignetti, R. Bjorkquist, S. Kim, Benjamin T. King, D. Moricciani, C. Gabbanini, A. Tewlsey-Booth, V. Krylov, Yu. M. Shatunov, Andre Frankenthal, S. Leo, M. E. Convery, S. Mastroianni, A. Chapelain, A. Palladino, Andrzej Wolski, H. Nguyen, B. Kiburg, Alexander Mikhailichenko, K. W. Merritt, J. Kaspar, Dinko Pocanic, M. Popovic, M. Lancaster, W. M. Morse, Timothy Chupp, M. McEvoy, Dariush Hampai, X. Ji, M. Shenk, S. Al-Kilani, A. K. Soha, D. A. Tarazona, Klaus-Peter Jungmann, Alejandro Garcia, Logashenko, I., Grange, J., Winter, P., Carey, R. M., Hazen, E., Kinnaird, N., Miller, J. P., Mott, J., Roberts, B. L., Crnkovic, J., Morse, W. M., Sayed, H. Kamal, Tishchenko, V., Druzhinin, V. P., Shatunov, Y. M., Bjorkquist, R., Chapelain, A., Eggert, N., Frankenthal, A., Gibbons, L., Kim, S., Mikhailichenko, A., Orlov, Y., Rider, N., Rubin, D., Sweigart, D., Allspach, D., Barzi, E., Casey, B., Convery, M. E., Drendel, B., Freidsam, H., Johnstone, C., Johnstone, J., Kiburg, B., Kourbanis, I., Lyon, A. L., Merritt, K. W., Morgan, J. P., Nguyen, H., Ostiguy, J. F., Para, A., Polly, C. C., Popovic, M., Ramberg, E., Rominsky, M., Soha, A. K., Still, D., Walton, T., Yoshikawa, C., Jungmann, K., Onderwater, C. J. G., Debevec, P., Leo, S., Pitts, K., Schlesier, C., Anastasi, A., Babusci, D., Corradi, G., Hampai, D., Palladino, A., Venanzoni, G., Dabagov, S., Ferrari, C., Fioretti, A., Gabbanini, C., Di Stefano, R., Marignetti, S., Iacovacci, M., Mastroianni, S., Di Sciascio, G., Moricciani, D., Cantatore, Giovanni, Karuza, M., Giovanetti, K., Baranov, V., Duginov, V., Khomutov, N., Krylov, V., Kuchinskiy, N., Volnykh, V., Gaisser, M., Haciomeroglu, S., Kim, Y., Lee, S., Lee, M., Semertzidis, Y. K., Won, E., Fatemi, R., Gohn, W., Gorringe, T., Bowcock, T., Carroll, J., King, B., Maxfield, S., Smith, A., Teubner, T., Whitley, M., Wormald, M., Wolski, A., Al Kilani, S., Chislett, R., Lancaster, M., Motuk, E., Stuttard, T., Warren, M., Flay, D., Kawall, D., Meadows, Z., Syphers, M., Tarazona, D., Chupp, T., Tewlsey Booth, A., Quinn, B., Eads, M., Epps, A., Luo, G., Mcevoy, M., Pohlman, N., Shenk, M., de Gouvea, A., Welty Rieger, L., Schellman, H., Abi, B., Azfar, F., Henry, S., Gray, F., Fu, C., Ji, X., Li, L., Yang, H., Stockinger, D., Cauz, D., Pauletta, G., Santi, L., Baessler, S., Frlez, E., Pocanic, D., Alonzi, L. P., Fertl, M., Fienberg, A., Froemming, N., Garcia, A., Hertzog, D. W., Kammel, P., Kaspar, J., Osofsky, R., Smith, M., Swanson, E., Lynch, K., Precision Frontier, Ostiguy, J. -F., Cantatore, G., Al-Kilani, S., Tewlsey-Booth, A., Welty-Rieger, L., and Abys, Salvatore
- Subjects
Particle physics ,magnetic moment ,standard model ,General Physics and Astronomy ,Standard deviation ,Standard Model ,Muon magnetic moment ,Nuclear physics ,Physics and Astronomy (all) ,anomalous magnetic moment ,Positron ,muon anomaly ,muon ,Fermilab ,Physical and Theoretical Chemistry ,instrumentation ,Physics ,Muon ,Anomalous magnetic moment ,Standard model ,Chemistry (all) ,Anomalous magnetic dipole moment ,Magnetic moment ,General Chemistry ,Magnetic field ,High Energy Physics::Experiment ,measurement ,muon, magnetic moment, instrumentation, measurement - Abstract
The anomalous magnetic moment of the muon is one of the most precisely measured quantities in experimental particle physics. Its latest measurement at Brookhaven National Laboratory deviates from the Standard Model expectation by approximately 3.5 standard deviations. The goal of the new experiment, E989, now under construction at Fermilab, is a fourfold improvement in precision. Here, we discuss the details of the future measurement and its current status. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4917553]
- Published
- 2015
37. Performance of the NA62 LAV front-end electronics
- Author
-
F. Costantini, Emilio Leonardi, F. Ambrosino, T. Spadaro, F. Raffaelli, F. Gonnella, V. Palladino, C. Paglia, D. Tagnani, Paolo Massarotti, I. Mannelli, M. Moulson, G. Corradi, D. Di Filippo, Paolo Valente, M. Napolitano, R. Fantechi, Mauro Raggi, A. Antonelli, A., Antonelli, G., Corradi, F., Gonnella, M., Moulson, C., Paglia, M., Raggi, T., Spadaro, D., Tagnani, Ambrosino, Fabio, DI FILIPPO, Domenico, Massarotti, Paolo, Napolitano, Marco, F., Costantini, R., Fantechi, I., Mannelli, F., Raffaelli, E., Leonardi, Palladino, Vito, and P., Valente
- Subjects
Physics ,instrumentation ,Range (particle radiation) ,Photon ,Meson ,business.industry ,Resolution (electron density) ,Electrical engineering ,NA62 experiment ,trigger algorithms ,mathematical physics ,Optics ,analogue electronic circuits ,modular electronics ,front-end electronics for detector readout ,business ,Energy (signal processing) ,Electronic circuit ,Communication channel - Abstract
The NA62 experiment [1] will measure the BR(K+→π+ν) to within about 10%. To reject the dominant background from final state photons, the large-angle vetoes (LAVs) must detect particles with better than 1 ns time resolution and 10% energy resolution over a very large energy range. A low threshold, large dynamic range, Time-over-threshold based solution has been developed for the LAV front end electronics. Our custom 32 channel 9U board uses a pair of low threshold discriminators for each channel to produce LVDS logic signals. The achieved time resolution obtained in laboratory, coupled to an HPTDC based readout board, is ~ 150 ps.
- Published
- 2013
38. Progress status for the Mu2e calorimeter system
- Author
-
P. Murat, J. Budagov, F. C. Porter, G. Corradi, F. Cervelli, S. Miscetti, R. Carosi, Gianantonio Pezzullo, F. Spinella, A. Saputi, V. V. Glagolev, M. Cordelli, D. G. Hitlin, B. Echenard, A. Lucà, S. Giovannella, Yu.I. Davydov, V Stomaci, F. Happacher, P Ongmonkolkul, M. Martini, C. H. Cheng, G. Tassielli, I. Sarra, Pezzullo, Gianantonio, Budagov, J., Carosi, R., Cervelli, F., Cheng, C., Cordelli, M., Corradi, G., Davydov, Yu, Echenard, B., Giovannella, S., Glagolev, V., Happacher, F., Hitlin, D., Luca, A., Martini, M., Miscetti, S., Murat, P., Ongmonkolkul, P., Porter, F., Saputi, A., Sarra, I., Spinella, F., Stomaci, V., and Tassielli, G.
- Subjects
Physics ,History ,Muon ,Calorimeter (particle physics) ,Physics::Instrumentation and Detectors ,Electron ,Particle detector ,Particle identification ,Computer Science Applications ,Education ,Nuclear physics ,Physics and Astronomy (all) ,Scintillation counter ,Mu2e ,High Energy Physics::Experiment ,Lepton - Abstract
The Mu2e experiment at FNAL aims to measure the charged-lepton flavor violating neutrinoless conversion of a negative muon into an electron. The conversion results in a monochromatic electron with an energy slightly below the muon rest mass (104.97 MeV). The calorimeter should confirm that the candidates reconstructed by the extremely precise tracker system are indeed conversion electrons while performing a powerful μ/e particle identification. Moreover, it should also provide a high level trigger for the experiment independently from the tracker system. The calorimeter should also be able to keep functionality in an environment where the background delivers a dose of ~ 10 krad/year in the hottest area and to work in the presence of 1 T axial magnetic field. These requirements translate in the design of a calorimeter with large acceptance, good energy resolution O(5%) and a reasonable position (time) resolution of ~ < 1 cm (
- Published
- 2015
39. A 32 channels charge integrating ADC based on digital signal integration
- Author
-
P. Branchini, A. Balla, G. Finocchiaro, E. De Lucia, M. Gatta, G. Corradi, M. Beretta, G. Felici, Paolo Ciambrone, P. De Simone, P. Valente, and Vincenzo Patera
- Subjects
Physics ,Time delay and integration ,Nuclear and High Energy Physics ,Range (particle radiation) ,business.industry ,Electrical engineering ,Ranging ,Charge (physics) ,Integrating ADC ,Integrator ,Digital signal ,business ,Instrumentation ,VMEbus - Abstract
A digital charge integrator with programmable gate width and range has been designed for use in the KLOE drift chamber front-end chain. The system has a resolution of 9 bits ranging from 600 fC / count up to ≈ 76 pC and integration time ranging from 100 ns to about 13 μ s . Thirty-two channels have been packaged in a single VME 9U board.
- Published
- 2006
40. The NA62 LAV front-end electronics
- Author
-
G. Saracino, Mauro Raggi, D. Di Filippo, B. Angelucci, P. Massarotti, Paolo Valente, S. Venditti, T. Spadaro, S. Gallorini, C. Paglia, S. Giudici, V. Palladino, M. Serra, F. Ambrosino, I. Mannelli, Maddalena Napolitano, R. Fantechi, G. D'Agostini, A. Antonelli, M. Moulson, F. Raffaelli, D. Tagnani, F. Costantini, Emilio Leonardi, G. Corradi, A., Antonelli, G., Corradi, M., Moulson, C., Paglia, M., Raggi, T., Spadaro, D., Tagnani, Ambrosino, Fabio, D. D., Filippo, Massarotti, Paolo, Napolitano, Marco, Saracino, Giulio, B., Angelucci, F., Costantini, R., Fantechi, S., Gallorini, S., Giudici, I., Mannelli, F., Raffaelli, S., Venditti, G., D'Agostini, E., Leonardi, V., Palladino, M., Serra, and P., Valente
- Subjects
Physics ,Range (particle radiation) ,Physics - Instrumentation and Detectors ,Discriminator ,Photon ,Large Hadron Collider ,Meson ,business.industry ,Branching fraction ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Analogue electronic circuits ,Front-end electronics for detector readout ,Instrumentation ,Mathematical Physics ,Instrumentation and Detectors (physics.ins-det) ,NA62 experiment ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Optics ,Detectors and Experimental Techniques ,business ,Energy (signal processing) - Abstract
The branching ratio for the decay $K^+ \to \pi^+\nu\bar{\nu}$ is sensitive to new physics; the NA62 experiment will measure it to within about 10%. To reject the dominant background from channels with final state photons, the large-angle vetoes (LAVs) must detect particles with better than 1 ns time resolution and 10% energy resolution over a very large energy range. Our custom readout board uses a time-over-threshold discriminator coupled to a TDC as a straightforward solution to satisfy these requirements. A prototype of the readout system was extensively tested together with the ANTI-A2 large angle veto module at CERN in summer 2010., Comment: prepared for the TWEPP 2011 conference proceedings
- Published
- 2011
- Full Text
- View/download PDF
41. APD readout for Belle II endcap calorimeter upgrade with undoped Cesium Iodide crystals
- Author
-
Alessandro Rossi, Crisostomo Sciacca, Claudia Cecchi, P. Patteri, Elisa Manoni, Alessia Cemmi, I. M. Peruzzi, D. Tagnani, R. de Sangro, Alberto Aloisio, P. Branchini, R. Giordano, G. Finocchiaro, M. Piccolo, P. Lubrano, B. Oberhof, Sergio Cavaliere, A. Passeri, S. Fiore, G. Corradi, E. De Lucia, G. De Nardo, Stefania Baccaro, A. Ordine, G. Felici, M. Montecchi, Fiore, S., Aloisio, Alberto, Baccaro, S., Branchini, P., Cavaliere, S., Cecchi, C., Cemmi, A., Corradi, G., De Lucia, E., DE NARDO, Guglielmo, De Sangro, R., Felici, G., Finocchiaro, G., Giordano, Raffaele, Lubrano, P., Manoni, E., Montecchi, M., Oberhof, B., Ordine, A., Passeri, A., Patteri, P., Peruzzi, I., Piccolo, M., Rossi, A., Sciacca, C., and Tagnani, D.
- Subjects
Physics ,Nuclear and High Energy Physics ,Meson ,Calorimeter (particle physics) ,Radiology, Nuclear Medicine and Imaging ,Physics::Instrumentation and Detectors ,Physics::Medical Physics ,Gamma ray ,Physics::Optics ,Photodetector ,Optical coupling ,Nuclear physics ,Cesium iodide ,Upgrade ,Nuclear Medicine and Imaging ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Irradiation ,Radiology - Abstract
The above-mentioned measurements, on crystals, photodetectors and optical couplings, performed at INFN and ENEA laboratories and irradiation facilities, represent a thorough study of options, that will allow the optimal solution for the upgrade of the Belle II end cap calorimeter to be found. © 2014 IEEE.
- Published
- 2014
42. THE CHARGED ANTICOUNTER FOR THE NA62 EXPERIMENT AT CERN
- Author
-
G. Corradi, L. Roscilli, G. Saracino, T. Capussela, D. Tagnani, D. Di Filippo, F. Ambrosino, Maddalena Napolitano, Marco Mirra, P. Massarotti, and C. Paglia
- Subjects
Nuclear physics ,Physics ,Large Hadron Collider ,NA62 experiment - Published
- 2014
43. The NA62 LAV front-end electronics and the L0 trigger generating firmware
- Author
-
Tommaso Spadaro, G. Corradi, Antonella Antonelli, Mauro Raggi, Matthew Moulson, S. Martellotti, V. Kozhuharov, and F. Gonnella
- Subjects
Engineering ,Photons ,Multidisciplinary ,business.industry ,Firmware ,Time resolution ,Branching ratio ,Integrated circuit design ,computer.software_genre ,Front end electronics ,Embedded system ,Detectors and Experimental Techniques ,business ,Field-programmable gate array ,computer ,Computer hardware - Abstract
The aim of the NA62 experiment is to measure the branching ratio of the decay K + ! p + n ̄ n to within about 10%. The large-angle photon vetoes (LAVs) must detect particles with better than 1 ns time resolution and 10% energy resolution over a very large energy range in order to reject the dominant background: photons coming from p + p 0 decays. A low threshold, large dynamic range, time-over-threshold based solution has been developed for the LAV front end electronics (LAV-FEE). Our custom 32 channel 9U board uses a pair of low threshold discriminators for each channel to produce LVDS logic signals. The achieved time resolution obtained in laboratory, coupled to a readout board based on the HPTDC chip developed at CERN, is 100 ps. For LAV-FEE, a FPGA-based level-0 trigger providing slewing-corrected trigger time with similar precision has also been developed.
- Published
- 2014
44. LFV and exotics at the NA62 experiment
- Author
-
V. Duk, G. A. Rinella, R. Aliberti, B. Angelucci, A. Antonelli, G. Anzivino, R. Arcidiacono, I. Azhinenko, S. Balev, J. Bendotti, A. Biagioni, C. Biino, A. Bizzeti, T. Blazek, A. Blik, B. Bloch Devaux, V. Bolotov, V. Bonaiuto, M. Bragadireanu, D. Britton, G. Britvich, N. Brook, F. Bucci, V. Buescher, F. Butin, E. Capitolo, C. Capoccia, V. Carassiti, N. Cartiglia, A. Cassese, A. Catinaccio, A. Cecchetti, A. Ceccucci, P. Cenci, V. Cerny, C. Cerri, O. Chikilev, R. Ciaranfi, G. Collazuol, P. Cooke, P. Cooper, G. Corradi, E. C. Gil, F. Costantini, A. C. Ramusino, D. Coward, G. D'Agostini, J. Dainton, P. Dalpiaz, H. Danielsson, J. Degrange, N. D. Simone, L. D. Lella, N. Dixon, N. Doble, V. Elsha, J. Engelfried, T. Enik, V. Falaleev, R. Fantechi, L. Federici, M. Fiorini, J. Fry, A. Fucci, L. Fulton, S. Gallorini, L. Gatignon, A. Gianoli, S. Giudici, L. Glonti, A. G. Martins, F. Gonnella, E. Goudzovski, R. Guida, E. Gushchin, F. Hahn, B. Hallgren, H. Heath, F. Herman, D. Hutchcroft, E. Iacopini, O. Jamet, P. Jarron, K. Kampf, J. Kaplon, V. Karjavin, V. Kekelidze, S. Kholodenko, G. Khoriauli, A. Khudyakov, Y. Kiryushin, K. Kleinknecht, A. Kluge, M. Koval, AMBROSINO, FABIO, CAPUSSELA, TIZIANA, DI FILIPPO, DOMENICO, V., Duk, G. A., Rinella, R., Aliberti, Ambrosino, Fabio, B., Angelucci, A., Antonelli, G., Anzivino, R., Arcidiacono, I., Azhinenko, S., Balev, J., Bendotti, A., Biagioni, C., Biino, A., Bizzeti, T., Blazek, A., Blik, B., Bloch Devaux, V., Bolotov, V., Bonaiuto, M., Bragadireanu, D., Britton, G., Britvich, N., Brook, F., Bucci, V., Buescher, F., Butin, E., Capitolo, C., Capoccia, Capussela, Tiziana, V., Carassiti, N., Cartiglia, A., Cassese, A., Catinaccio, A., Cecchetti, A., Ceccucci, P., Cenci, V., Cerny, C., Cerri, O., Chikilev, R., Ciaranfi, G., Collazuol, P., Cooke, P., Cooper, G., Corradi, E. C., Gil, F., Costantini, A. C., Ramusino, D., Coward, G., D'Agostini, J., Dainton, P., Dalpiaz, H., Danielsson, J., Degrange, N. D., Simone, DI FILIPPO, Domenico, L. D., Lella, N., Dixon, N., Doble, V., Elsha, J., Engelfried, T., Enik, V., Falaleev, R., Fantechi, L., Federici, M., Fiorini, J., Fry, A., Fucci, L., Fulton, S., Gallorini, L., Gatignon, A., Gianoli, S., Giudici, L., Glonti, A. G., Martin, F., Gonnella, E., Goudzovski, R., Guida, E., Gushchin, F., Hahn, B., Hallgren, H., Heath, F., Herman, D., Hutchcroft, E., Iacopini, O., Jamet, P., Jarron, K., Kampf, J., Kaplon, V., Karjavin, V., Kekelidze, S., Kholodenko, G., Khoriauli, A., Khudyakov, Y., Kiryushin, K., Kleinknecht, A., Kluge, and M., Koval
- Subjects
Physics ,History ,Sterile neutrino ,Particle physics ,Large Hadron Collider ,Photon ,Branching fraction ,Carry (arithmetic) ,High Energy Physics::Phenomenology ,NA62 experiment ,Settore FIS/04 - Fisica Nucleare e Subnucleare ,Computer Science Applications ,Education ,Standard Model ,Nuclear physics ,High Energy Physics::Experiment ,Lepton - Abstract
The NA62 experiment at the CERN SPS is aimed at measuring the branching fraction of the ultrarare decay K+ → π+v with ~10% precision by collecting ~1013 kaon decays in two years of data taking. This amount of data will allow to carry out a wide program of searching for rare and forbidden (within the Standard Model) K+ and π0 decays, including sterile neutrinos, lepton flavor violating modes, exotic particles (e.g. "dark photons"). The expected performances of the NA62 setup will allow to improve existing limits for several decay modes.
- Published
- 2014
45. Small-polaron based holograms in LiNbO₃ in the visible spectrum
- Author
-
H, Brüning, V, Dieckmann, B, Schoke, K-M, Voit, M, Imlau, G, Corradi, and C, Merschjann
- Abstract
Diffraction efficiency, relaxation behavior and dependence on pump-beam intensity of small-polaron based holograms are studied in thermally reduced, nominally undoped lithium niobate in the visible spectrum (λ = 488 nm). The pronounced phase gratings with diffraction efficiency up to η = (10.8 ± 1.0)% appeared upon irradiation by single ns-laser pulses (λ = 532 nm) and are comprehensively assigned to the optical formation of spatially modulated densities of small bound NbLi4+ electron polarons, NbLi4+:NbNb4+ electron bipolarons, and O⁻ hole polarons. A remarkable quadratic dependence on the pump-beam intensity is discovered for the recording configuration K || c-axis and can be explained by the electro-optic contribution of the optically generated small bound polarons. We discuss the build-up of local space-charge fields via small-polaron based bulk photovoltaic currents.
- Published
- 2012
46. Kaonic hydrogen X-ray measurement in SIDDHARTA
- Author
-
E. Widmann, M. Bazzi, Luca Bombelli, Michael Cargnelli, C. Guaraldo, Carlo Fiorini, V. Lucherini, G. Corradi, O. Vazquez Doce, Hexi Shi, H. Tatsuno, M. Iwasaki, F. Ghio, Paul Kienle, P. Levi Sandri, Alessandro Scordo, Johann Zmeskal, Shinji Okada, Catalina Curceanu, A. dʼUffizi, Diana Sirghi, V. Tudorache, Dorel Pietreanu, A. Tudorache, A. Romero Vidal, Antonio Francesco Longoni, A. Rizzo, Ryugo S. Hayano, Tommaso Frizzi, M. Iliescu, Florin Sirghi, T. Ponta, A. M. Bragadireanu, G. A. Beer, T. Ishiwatari, and Johann Marton
- Subjects
Quantum chromodynamics ,Physics ,Nuclear and High Energy Physics ,Particle physics ,sezele ,010308 nuclear & particles physics ,Kaonic hydrogen ,Strong interaction ,X-ray ,FOS: Physical sciences ,Strangeness ,01 natural sciences ,law.invention ,Nuclear physics ,law ,0103 physical sciences ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Physics::Atomic Physics ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Chiral symmetry breaking ,Collider ,Nuclear Experiment - Abstract
Kaonic hydrogen atoms provide a unique laboratory to probe the kaon-nucleon strong interaction at the energy threshold, allowing an investigation of the interplay between spontaneous and explicit chiral symmetry breaking in low-energy QCD. The SIDDHARTA Collaboration has measured the $K$-series X rays of kaonic hydrogen atoms at the DA$\Phi$NE electron-positron collider of Laboratori Nazionali di Frascati, and has determined the most precise values of the strong-interaction induced shift and width of the $1s$ atomic energy level. This result provides vital constraints on the theoretical description of the low-energy $\bar{K}N$ interaction., Comment: 11 pages, 7 figures, Nuclear Physics A (in press) Special Issue on Strangeness Nuclear Physics
- Published
- 2012
47. Kaonic 3He and 4He X-ray measurements in SIDDHARTA
- Author
-
Tomoichi Ishiwatari, M. Bazzi, G. Beer, C. Berucci, L. Bombelli, A. M. Bragadireanu, M. Cargnelli, A. Clozza, G. Corradi, C. Curceanu, A. d’Uffizi, C. Fiorini, F. Ghio, B. Girolami, C. Guaraldo, R. S. Hayano, M. Iliescu, M. Iwasaki, P. Kienle, P. Levi Sandri, V. Lucherini, J. Marton, S. Okada, D. Pietreanu, K. Piscicchia, M. Poli Lener, T. Ponta, R. Quaglia, A. Rizzo, A. Romero Vidal, E. Sbardella, A. Scordo, H. Shi, D. L. Sirghi, F. Sirghi, H. Tatsuno, A. Tudorache, V. Tudorache, O. Vazquez Doce, E. Widmann, B. Wünschek, and J. Zmeskal
- Subjects
010308 nuclear & particles physics ,0103 physical sciences ,010306 general physics ,01 natural sciences - Published
- 2012
48. Low-Energy Kaon-Nucleon/Nuclei Interaction Studies at DAΦNE (SIDDHARTA and AMADEUS Experiments)
- Author
-
Catalina Curceanu, Luca Bombelli, M. Poli Lener, T. Ponta, A. M. Bragadireanu, C. Guaraldo, J. Zmeskal, Michael Cargnelli, G. Corradi, Florin Sirghi, A. Rizzo, T. Ishiwatari, Diana Sirghi, E. Widmann, Alessandro Scordo, M. Bazzi, Hexi Shi, H. Tatsuno, V. Lucherini, A. Romero Vidal, Carlo Fiorini, M. Iwasaki, D. Pietreanu, M. Iliescu, O. Vazquez Doce, A. d'Uffizi, B. Girolami, A. Longoni, G. A. Beer, Johann Marton, A. Tudorache, P. Kienle, V. Tudorache, Shinji Okada, K. Piscicchia, F. Ghio, Tommaso Frizzi, Ryugo S. Hayano, and P. Levi Sandri
- Subjects
Physics ,Meson ,sezele ,Nuclear Theory ,Hadron ,Elementary particle ,Atomic and Molecular Physics, and Optics ,law.invention ,Baryon ,Nuclear physics ,kaon-nuclei interaction ,law ,Antimatter ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Nuclear Experiment ,Nucleon ,Collider ,Lepton - Abstract
The DAΦNE electron–positron collider of the Laboratori Nazionali di Frascati of INFN has made available a unique quality low-energy negatively charged kaons “beam”, which is being used to study the kaon–nucleon/nuclei interactions by the SIDDHARTA-2 experiment and the AMADEUS Collaboration. The dynamics of the strong interaction processes in the nonperturbative regime is approached by lattice calculations and effective field theories (ChPT) which are still lacking experimental results in the lowenergy regime, fundamental for their good understanding. The studies of kaonic atoms and of the kaonic nuclear processes performed by SIDDHARTA-2 and AMADEUS play in this context a key-role.
- Published
- 2011
49. Kaonic helium X-ray measurement in the SIDDHARTA experiment
- Author
-
H. Tatsuno, Catalina Curceanu, P. Kienle, Luca Bombelli, M. Iliescu, Florin Sirghi, E. Widmann, A. Romero Vidal, V. Lucherini, A. d'Ufflzi, Antonio Francesco Longoni, Carlo Fiorini, T. Ishiwatari, Ryugo S. Hayano, Shinji Okada, O. Vazquez Doce, Diana Sirghi, M. Iwasaki, E M Cargnelli, G. A. Beer, Johann Marton, B. Girolami, T. Ponta, A. M. Bragadireanu, F. Ghio, A. Tudorache, Hexi Shi, A. Rizzo, M. Bazzi, Tommaso Frizzi, V. Tudorache, Alessandro Scordo, P. Levi Sandri, Johann Zmeskal, C. Guaraldo, G. Corradi, and D. Pietreanu
- Subjects
Physics ,History ,Particle physics ,Silicon drift detector ,Silicon ,sezele ,Physics::Instrumentation and Detectors ,Nuclear Theory ,Hadron ,X-ray ,chemistry.chemical_element ,Computer Science Applications ,Education ,Nuclear physics ,Low energy ,chemistry ,Atom ,High Energy Physics::Experiment ,Physics::Atomic Physics ,Nuclear Experiment ,Spectroscopy ,Helium - Abstract
The SIDDHARTA (SIlicon Drift Detector for Hadronic Atom Research with Timing Application) collaboration performed X-ray spectroscopy measurement of kaonic atoms at the DAΦNE e+e−collider. Low energy negative kaons from DAΦNE -factory were stopped in gaseous targets to produce kaonic atoms. We employed specially designed Silicon Drift Detectors(SDDs) to detect the kaonic X-rays. Based on the energy of kaonic- 4He 3d → 2p transition, we determined a new value of the 2p level strong-interaction shift of kaonic- 4He: 0 ± 6 (stat.)± 2 (syst.) eV[1]. Together with the result of recent E570 experiment[2] at the KEK-PS, a small shift (if any) of kaonic- 4He 2p level has become well established.
- Published
- 2011
50. Measurement of neutron detection efficiency between 22 and 174 MeV using two different kinds of Pb-scintillating fiber sampling calorimeters
- Author
-
M. Anelli, F. Nguyen, Barbara Sciascia, M. Martini, A. Ferrari, B. Di Micco, I. Sarra, Florin Sirghi, A. Luca, A. Di Domenico, G. De Zorzi, P. Gauzzi, S. Miscetti, S. Bertolucci, S. Fiore, D. Tagnani, F. Happacher, Catalina Curceanu, Cesare Bini, A. Passeri, P. Branchini, M. Iliescu, Alexander V. Prokofiev, S. Giovannella, G. Corradi, and DI MICCO, Biagio
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,neutrons ,kloe ,efficiency ,calorimetry ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Scintillator ,Neutron radiation ,The Svedberg Laboratory ,Calorimeter ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Sampling (signal processing) ,Neutron detection ,Neutron ,Fiber ,Nuclear Experiment ,Instrumentation - Abstract
We exposed a prototype of the lead-scintillating fiber KLOE calorimeter to neutron beam of 21, 46 and 174 MeV at The Svedberg Laboratory, Uppsala, to study its neutron detection efficiency. This has been found larger than what expected considering the scintillator thickness of the prototype. We show preliminary measurement carried out with a different prototype with a larger lead/fiber ratio, which proves the relevance of passive material to neutron detection efficiency in this kind of calorimeters. (C) 2009 Elsevier B.V. All rights reserved. RI Gauzzi, Paolo/D-2615-2009; Fiore, Salvatore/C-9722-2011; Di Domenico, Antonio/G-6301-2011; branchini, paolo/A-4857-2011
- Published
- 2010
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.