V magistrski nalogi sem se posvetila obravnavi standardiziranega procesa odobritve potrošniškega kredita, ki ga odlikuje optimalen potek dela, z vključeno avtomatsko odločitvijo. Standardizacija je dejavnost vzpostavljanja usklajenih pravil in določil z namenom, da se doseže optimalna stopnja urejenosti na danem področju. Standardizacija je nujna, ker predstavlja pogoj za avtomatizacijo. Kreditni proces sestoji iz procesa prodaje, procesa obravnave kreditne vloge, procesa spremljave in odplačila. Večina bank ima v svojih zalednih službah dobro organizirano in avtomatizirano tretjo fazo kreditnega procesa, t.j. proces spremljave, v okviru katerega banka izvaja obračun obresti, spremembe obrestnih mer, spremembe anuitet ipd. Druga faza kreditnega procesa, to je obravnava kreditne vloge, ki je bistveno bolj zahtevna in tudi tvegana, ker je povezana s sprejemanjem odločitev, pa se pogosto izvaja ročno in decentralizirano po poslovalnicah. V ročno izvajanih poslovnih procesih so poslovna pravila in navodila v glavah kreditnih referentov, kar povečuje možnost napak in zlorab, prav tako je čas obdelave kreditne vloge predolg, kar zmanjšuje konkurenčnost banke. Za večino bank so krediti največji in najbolj očiten vir kreditnega tveganja. Za zmanjšanje kreditnega tveganja je ključno dobro upravljanje s tveganji. Banke dobro poznajo tehnike upravljanja s kreditnim tveganjem, saj ima bančni sektor dolgo zgodovino izkušenj na tem področju. S kapitalskim sporazumom Basel II, ki daje velik pomen tehnikam za zmanjševanje kreditnih tveganj in s kapitalskimi olajšavami motivira banke k uporabi notranjih bonitetnih sistemov, so znova pridobili na pomenu modeli kreditnega točkovanja. Modeli kreditnega točkovanja napovedujejo verjetnost, da potencialni kreditojemalec bodisi ne bo poravnal svojih obveznosti ali da bo po določenem časovnem obdobju začel zamujati. Kreditna ocena bankam omogoča hitro in avtomatizirano odločanje, kar je glavna prednost modelov kreditnega točkovanja. Z vidika banke je avtomatizacija odločanja zlasti pomembna pri poslih z velikim številom strank in majhno maržo na enoto produkta, kar je značilno za potrošniške kredite. Na drugi strani, z vidika strank, hitre, transparentne in dosledne bančne odločitve pomembno vplivajo na izboljšanje uporabniške izkušnje. V empiričnem delu naloge, smo na osnovi razkritij iz letnih poročil bank za leto 2014, predstavili in analizirati prakso bank v EU na področju upravljanja in merjenja kreditnih tveganj. Iz vsake izmed 28 držav članic EU smo izbrali po 5 največjih bank, glede na višino bilančne vsote in jih analizirali z vidika uporabe modelov kreditnega točkovanja ter uporabe notranjih bonitetnih ocen za določanje potrebnega kapitala. Analiza vzorca bank je pokazala, da 71% bank držav članic, kreditno sposobnost prebivalstva ocenjuje s pomočjo modelov kreditnega točkovanja in da le 20% bank držav članic kredite prebivalstvu odobrava na podlagi standardiziranega in avtomatiziranega procesa odločanja. Glede na velik razkorak med deležem bank, ki uporabljajo modele kreditnega točkovanja in deležem bank, ki potrošniške kredite odobravajo s pomočjo avtomatiziranega odločanja se poraja upravičen pomislek, da banke v letnih poročilih avtomatiziranega odločanja o kreditu niso razkrile. his master thesis I focused on reading a standardized approval process consumer credit, which is distinguished by optimal workflow with integrated automatic decision. Standardization is the activity of establishing harmonized rules and regulations in order to achieve the optimum degree of order in a given field. Standardization is necessary, as a prerequisite for automation. Credit process consists of the sales process, the process of reading the credit application process monitoring and amortization. Most banks have in their back-office well organized and automated the third stage of the loan process, i process monitoring, in which the bank carries out the calculation of interest, changes in interest rates, changes in annuities, etc. The second phase of the loan process, it is considered a credit application which is substantially more challenging and risky because it is linked to the decision making is often done manually and the decentralized offices. To manually implemented business processes are business rules and instructions in the minds of credit officers, which increases the possibility of errors and abuses, as well as the processing time is too long the role of credit, which reduces the competitiveness of the bank. For most banks, the loans biggest and most obvious source of credit risk. Credit risk mitigation is important to have good risk management. Bank of well known techniques of credit risk management, because the banking sector has a long history of experience in this field. The Basel II capital, which attaches great importance to techniques for reducing credit risk and capital incentives to motivate banks to use internal ratings systems are again on a higher level of credit scoring models. Credit scoring models predict the likelihood that a potential borrower either fail to meet its obligations or that after a certain period of time started to arrive late. The credit score enables banks to quickly and automated decision-making, which is the main advantage of credit scoring models. In terms of the Bank's decision-making automation is particularly important in dealings with a large number of clients and a small margin per unit of product, which is typical for consumer credit. On the other hand, from the perspective of customers, prompt, transparent and consistent banking decisions have a significant impact on improving the user experience. In the empirical part of the dissertation, we based on the disclosures of the Bank's annual report for 2014, presented and analyzed the practice of banks in the EU in the field of management and measurement of credit risk. From each of the 28 EU Member States were selected 5 largest banks, depending on the amount of total assets and analyzed in terms of the use of credit scoring models and the use of internal ratings to calculate capital requirements. Analysis of the sample of banks showed that 71% banks of the Member States, the creditworthiness of the population estimated by using credit scoring models and that only 20% of banks of the Member States as retail loans were granted on the basis of a standardized and automated decision-making process. Given the large gap between the proportion of banks using credit scoring models and the share of banks that consumer loans are granted by means of an automated decision-making raises legitimate concerns that banks in the annual reports, automated credit decision did not reveal.