1. Stabilization of the cubic phase of HfO2 by Y addition in films grown by metal organic chemical vapor deposition
- Author
-
M. D. Rossell, B. Pelissier, B. Hollander, G. Van Tendeloo, Catherine Dubourdieu, Nevine Rochat, Erwan Rauwel, F. Ducroquet, Laboratoire des matériaux et du génie physique (LMGP ), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut für Schichten und Grenzflächen (ISG1) and Center of Nanoelectronics Systems for Information Technology (ISG1), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, CEA Grenoble, DRT/DPTS/SCPIO/LCPO (CEA GRENOBLE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Microélectronique, Electromagnétisme et Photonique (IMEP), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Université Joseph Fourier - Grenoble 1 (UJF), Electron Microscopy for Material Resaerch (EMAT) (EMAT), University of Antwerp (UA), Laboratoire des technologies de la microélectronique (LTM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), and Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Permittivity ,Materials science ,Physics and Astronomy (miscellaneous) ,Silicon ,Inorganic chemistry ,Analytical chemistry ,chemistry.chemical_element ,02 engineering and technology ,Chemical vapor deposition ,01 natural sciences ,high K ,0103 physical sciences ,ddc:530 ,Metalorganic vapour phase epitaxy ,Thin film ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,Physics ,Yttrium ,Combustion chemical vapor deposition ,021001 nanoscience & nanotechnology ,permittivity ,Carbon film ,chemistry ,MOCVD ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,oxide ,stabilisation ,0210 nano-technology - Abstract
Addition of yttrium in HfO(2) thin films prepared on silicon by metal organic chemical vapor deposition is investigated in a wide compositional range (2.0-99.5 at. %). The cubic structure of HfO(2) is stabilized for 6.5 at. %. The permittivity is maximum for yttrium content of 6.5-10 at. %; in this range, the effective permittivity, which results from the contribution of both the cubic phase and silicate phase, is of 22. These films exhibit low leakage current density (5x10(-7) A/cm(2) at -1 V for a 6.4 nm film). The cubic phase is stable upon postdeposition high temperature annealing at 900 degrees C under NH(3). (c) 2006 American Institute of Physics.
- Published
- 2006
- Full Text
- View/download PDF