Claire Saulou, Isabelle Fourquaux, Muriel Mercier-Bonin, P. Dumas, C. Maranges, Patrice Raynaud, Bernard Despax, Frédéric Jamme, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), Université Fédérale Toulouse Midi-Pyrénées, LAboratoire PLasma et Conversion d'Energie (LAPLACE), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA), Institut National de la Recherche Agronomique (INRA), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA), Centre de Microscopie Électronique Appliquée à la Biologie (CMEAB), Hôpital de Rangueil, CHU Toulouse [Toulouse]-CHU Toulouse [Toulouse]-Toulouse Réseau Imagerie-Genotoul ( TRI-Genotoul), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Matériaux et Procédés Plasmas (LAPLACE-MPP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), The research described in this paper was performed at the French national synchrotron facility SOLEIL (Gif-sur-Yvette, France), using the SMIS beamline (proposal no 20060176)., ANR-07-BLAN-0196,BIOPLEASURE,Plasma - surface engineering for biofilm prevention(2007), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Hôpital de Rangueil, CHU Toulouse [Toulouse]-CHU Toulouse [Toulouse], Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT), Toulouse Réseau Imagerie-Genotoul ( TRI-Genotoul), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
International audience; The present work was focused on elucidating changes in the model yeast Saccharomyces cerevisiae (cell composition, ultrastructure) after exposure to antimicrobial plasma-mediated nanocomposite films. In order to achieve this, a nanosilver-containing coating was deposited onto stainless steel using radiofrequency HMDSO plasma deposition, combined with simultaneous silver sputtering. X-ray photoelectron spectroscopy (XPS) confirmed the presence of silver nanoparticles embedded in an organo-silicon matrix. In addition, scanning electron microscopy (SEM) demonstrated the nanoparticle-based morphology of the deposited layer. The antifungal properties towards S. cerevisiae were established, since a 1.4 log reduction in viable counts was observed after a 24-h adhesion compared to control conditions with the matrix alone. Differences in cell composition after exposure to the nanosilver was assessed for the protein region using, for the first time, synchrotron Fourier-transform infrared (FTIR) microspectroscopy of single S. cerevisiae cells, through in situ mapping with sub-cellular spatial resolution. IR spectrum of yeast cells recovered after a 24-h adhesion to the nanosilver-containing coating revealed a significant downshift (20 cm −1) of the amide I peak at 1655 cm −1 , compared to freshly harvested cells. This lower band position, corresponding to a loss in α-helix structures, is indicative of the disordered secondary structures of proteins, due to the transition between active and inactive conformations under nanosilver-induced stress conditions. No significant effect on the nucleic acid region was detected. The inhibitory action of silver was targeted against both cell wall and intracellular proteins such as enzymes. Transmission electron microscopy (TEM) observations of the yeastultrastructure confirmed serious morphological and structural damages. A homogeneous protein-binding distribution of nanosilver all over the cell was assumed, since the presence of electron-dense silver clusters was detected not only on the cell surface but also within the cell. For control experiments with the organosilicon matrix alone, no antimicrobial effect was observed, which was consistent with synchrotron FTIR results and TEM observations.